cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A199909 T(n,k)=Number of -k..k arrays x(0..n-1) of n elements with zero sum, and adjacent elements not equal modulo three (with -1 modulo 3 = 2).

Original entry on oeis.org

1, 1, 2, 1, 4, 6, 1, 4, 12, 8, 1, 6, 24, 24, 14, 1, 8, 42, 72, 82, 32, 1, 8, 60, 152, 256, 232, 56, 1, 10, 84, 256, 804, 1312, 654, 100, 1, 12, 114, 448, 1836, 5016, 5206, 2044, 204, 1, 12, 144, 680, 3196, 12872, 24864, 21208, 6096, 388, 1, 14, 180, 952, 6064, 29864, 77874
Offset: 1

Views

Author

R. H. Hardin Nov 11 2011

Keywords

Comments

Table starts
...1.....1......1.......1........1.........1.........1..........1..........1
...2.....4......4.......6........8.........8........10.........12.........12
...6....12.....24......42.......60........84.......114........144........180
...8....24.....72.....152......256.......448.......680........952.......1384
..14....82....256.....804.....1836......3196......6064......10276......14846
..32...232...1312....5016....12872.....29864.....62776.....114768.....200520
..56...654...5206...24864....77874....216530....518560....1071202....2114394
.100..2044..21208..139148...547604...1699268...4854740...11588992...24551100
.204..6096..97668..814776..3784512..14546928..47329800..125461824..306360336
.388.18564.422052.4509164.25525476.116482068.436295060.1308549932.3582143596

Examples

			Some solutions for n=7 k=6
.-6...-3....4...-6...-3....4....4...-6....4....3....0....3...-6...-6....0....4
.-4....2....2...-4...-4....3...-1...-1....5....2....4....4....4....5...-1...-6
..4...-5....0...-3...-3....1....0....3...-5....4....0...-3...-6...-3...-5....4
.-4....6...-1....5....2...-6...-2....1...-4....0...-2...-1....1....1....0...-1
..6....5....0....4....3....5...-6...-1...-6...-4...-4...-5...-1...-4...-2....0
.-2...-6....1....6....5...-3....2....6....2...-3....6....5....6....1....6...-4
..6....1...-6...-2....0...-4....3...-2....4...-2...-4...-3....2....6....2....3
		

Crossrefs

Column 1 is A199697
Row 2 is A063200(n+2)

Formula

Empirical for rows:
T(1,k)=1
T(2,k)=a(k-1)+a(k-3)-a(k-4)
T(3,k)=2*a(k-1)-a(k-2)+a(k-3)-2*a(k-4)+a(k-5)
T(4,k)=a(k-1)+3*a(k-3)-3*a(k-4)-3*a(k-6)+3*a(k-7)+a(k-9)-a(k-10)
T(5,k)=a(k-1)+4*a(k-3)-4*a(k-4)-6*a(k-6)+6*a(k-7)+4*a(k-9)-4*a(k-10)-a(k-12)+a(k-13)
T(6,k)=2*a(k-1)-a(k-2)+4*a(k-3)-8*a(k-4)+4*a(k-5)-6*a(k-6)+12*a(k-7)-6*a(k-8)+4*a(k-9)-8*a(k-10)+4*a(k-11)-a(k-12)+2*a(k-13)-a(k-14)
T(7,k)=a(k-1)+6*a(k-3)-6*a(k-4)-15*a(k-6)+15*a(k-7)+20*a(k-9)-20*a(k-10)-15*a(k-12)+15*a(k-13)+6*a(k-15)-6*a(k-16)-a(k-18)+a(k-19)