cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A199911 Number of -n..n arrays x(0..3) of 4 elements with zero sum, and adjacent elements not equal modulo three (with -1 modulo 3 = 2).

Original entry on oeis.org

8, 24, 72, 152, 256, 448, 680, 952, 1384, 1848, 2368, 3136, 3912, 4760, 5960, 7128, 8384, 10112, 11752, 13496, 15848, 18040, 20352, 23424, 26248, 29208, 33096, 36632, 40320, 45120, 49448, 53944, 59752, 64952, 70336, 77248, 83400, 89752, 97864
Offset: 1

Views

Author

R. H. Hardin, Nov 11 2011

Keywords

Comments

Row 4 of A199909.

Examples

			Some solutions for n=6:
..0....0....0....2...-4...-5....1...-4...-4...-1...-3....5...-6....3....4....0
.-5....4....1...-3....3....0....2....3....6....0...-4...-5....1...-5....5...-2
..3...-3....5...-2....1....5...-5...-2....4...-2....6...-1....3....6...-5...-1
..2...-1...-6....3....0....0....2....3...-6....3....1....1....2...-4...-4....3
		

Crossrefs

Cf. A199909.

Formula

Empirical: a(n) = a(n-1) +3*a(n-3) -3*a(n-4) -3*a(n-6) +3*a(n-7) +a(n-9) -a(n-10).
Empirical g.f.: 8*x*(1 + x)*(1 + x^2)*(1 + x + 4*x^2 + x^3 + x^4) / ((1 - x)^4*(1 + x + x^2)^3). - Colin Barker, May 17 2018