cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A199918 Expansion of false theta series variation of Euler's pentagonal number series in powers of x.

This page as a plain text file.
%I A199918 #29 Jan 26 2025 09:06:43
%S A199918 1,1,1,0,0,1,0,-1,0,0,0,0,-1,0,0,-1,0,0,0,0,0,0,-1,0,0,0,1,0,0,0,0,0,
%T A199918 0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,
%U A199918 0,0,0,0,-1,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,1,0,0,0,0
%N A199918 Expansion of false theta series variation of Euler's pentagonal number series in powers of x.
%H A199918 G. C. Greubel, <a href="/A199918/b199918.txt">Table of n, a(n) for n = 0..10000</a>
%H A199918 B. C. Berndt, B. Kim, and A. J. Yee, <a href="http://dx.doi.org/10.1016/j.jcta.2009.07.005">Ramanujan's lost notebook: Combinatorial proofs of identities associated with Heine's transformation or partial theta functions</a>, J. Comb. Thy. Ser. A, 117 (2010), 957-973.
%F A199918 a(n) = b(24*n + 1) where b(n) is multiplicative with b(p^(2*e)) = (-1)^e if p == 13, 17, 29, 23 (mod 24), b(p^(2*e)) = +1 if p = 1, 5, 7, 11 (mod 24) and b(p^(2*e - 1)) = b(2^e) = b(3^e) = 0 if e > 0.
%F A199918 G.f.: 1 + Sum_{k>0} x^k / Product_{i=1..k} (1 + x^(2*i)) = 1 + Sum_{k>0} x^k * Product_{i=1..k-1} (1 + (-x)^i) = Sum_{k in Z} x^((k^2 - 1) / 24) * Kronecker(-24, k).
%F A199918 |a(n)| = |A010815(n)| = |A143062(n)|.
%F A199918 G.f.: A(x) = 1/(1 - x) * (2 - Sum_{k >= 0} x^(3*k)/Product_{i = 1..k} 1 + x^(2*i)) = 1/((1 - x)*(1 - x^3)) * (-2*x^3 + Sum_{k >= 0} x^(5*k)/Product_{i = 1..k} 1 + x^(2*i)). - _Peter Bala_, Jan 24 2025
%e A199918 G.f. = 1 + x + x^2 + x^5 - x^7 - x^12 - x^15 - x^22 + x^26 + x^35 + x^40 + ...
%e A199918 G.f. = q + q^25 + q^49 + q^121 - q^169 - q^289 - q^361 - q^529 + q^625 + q^841 + ...
%t A199918 a[ n_] := If[ SquaresR[ 1, 24 n + 1] == 2, KroneckerSymbol[ -6, Sqrt[ 24 n + 1]], 0];
%o A199918 (PARI) {a(n) = my(m); if( issquare( 24*n + 1, &m), kronecker( -6, m), 0)};
%Y A199918 Cf. A010815, A143062.
%K A199918 sign
%O A199918 0,1
%A A199918 _Michael Somos_, Nov 12 2011