A199920 Number of ways to write n = p+k with p, p+6, 6k-1 and 6k+1 all prime.
0, 0, 0, 0, 0, 1, 1, 2, 1, 2, 0, 3, 1, 3, 2, 2, 2, 3, 2, 2, 1, 2, 3, 3, 3, 1, 1, 3, 2, 4, 1, 2, 2, 3, 3, 3, 2, 4, 2, 4, 3, 3, 5, 3, 3, 3, 3, 4, 5, 3, 3, 3, 3, 5, 4, 4, 3, 4, 3, 3, 2, 3, 6, 5, 4, 2, 1, 3, 5, 5, 5, 2, 2, 3, 5, 3, 5, 4, 5, 2, 3, 2, 5, 5, 6, 4, 2, 3, 3, 4, 3, 3, 5, 4, 3, 1, 1, 4, 5, 7
Offset: 1
Examples
a(21)=1 since 21=11+10 with 11, 11+6, 6*10-1 and 6*10+1 all prime.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..50000
- Zhi-Wei Sun, Conjectures involving primes and quadratic forms, arXiv:1211.1588.
Programs
-
Mathematica
a[n_]:=a[n]=Sum[If[PrimeQ[Prime[k]+6]==True&&PrimeQ[6(n-Prime[k])-1]==True&&PrimeQ[6(n-Prime[k])+1]==True,1,0],{k,1,PrimePi[n]}] Do[Print[n," ",a[n]],{n,1,100}] Table[Count[Table[{n-i,i},{i,n-1}],?(AllTrue[{#[[1]],#[[1]]+6,6#[[2]]-1,6#[[2]]+1},PrimeQ]&)],{n,100}] (* The program uses the AllTrue function from Mathematica version 10 *) (* _Harvey P. Dale, May 19 2015 *)
-
PARI
a(n)=my(s,p=2,q=3); forprime(r=5,n+5, if(r-p==6 && isprime(6*n-6*p-1) && isprime(6*n-6*p+1), s++); if(r-q==6 && isprime(6*n-6*q-1) && isprime(6*n-6*q+1), s++); p=q; q=r); s \\ Charles R Greathouse IV, Jul 31 2016
Comments