cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A199932 Number of meanders of length n.

This page as a plain text file.
%I A199932 #17 Mar 30 2023 00:49:37
%S A199932 1,3,5,12,17,47,65,169,279,645,1025,2698,4097,9917,17345,39698,65537,
%T A199932 161395,262145,624004,1089007,2449881,4194305,10097733,16812683,
%U A199932 38754747,69117097,155178266,268435457,629929761,1073741825,2459703907,4400500499,9756737721
%N A199932 Number of meanders of length n.
%C A199932 A meander is a closed curve drawn by arcs of equal length and central angles of equal magnitude, starting with a positively oriented arc.
%C A199932 a(n) = 2^(n-1) + 1 iff n is prime.
%H A199932 Peter Luschny, <a href="http://oeis.org/wiki/User:Peter_Luschny/Meander">Meander</a>.
%F A199932 a(n) = Sum_{d|n} A198060(d-1,n/d-1).
%p A199932 A199932 := proc(n) local d, k, j, i; add(add(add(add(
%p A199932 (-1)^(j+i)*binomial(i,j)*binomial(n/d-1,k)^d*((n/d)/(k+1))^j,
%p A199932 i=0..d-1),j=0..d-1),k=0..(n/d-1)),d=numtheory[divisors](n)) end:
%p A199932 seq(A199932(i),i=1..34);
%t A199932 A198060[m_, n_] := Sum[ Sum[ Sum[(-1)^(j+i)*Binomial[i, j]* Binomial[n, k]^(m+1)*(n+1)^j*(k+1)^(m-j)/(k+1)^m, {i, 0, m}], {j, 0, m}], {k, 0, n}]; a[n_] := Sum[ A198060[d-1, n/d-1], {d, Divisors[n]}]; Table[a[n], {n, 1, 34}] (* _Jean-François Alcover_, Jun 27 2013 *)
%Y A199932 Cf. A198060, A200062.
%K A199932 nonn
%O A199932 1,2
%A A199932 _Peter Luschny_, Nov 20 2011