A200062 Meanders of length n and central angle < 360 degrees.
0, 1, 1, 4, 1, 15, 1, 41, 23, 133, 1, 650, 1, 1725, 961, 6930, 1, 30323, 1, 99716, 40431, 352729, 1, 1709125, 35467, 5200315, 2008233, 20960538, 1, 93058849, 1, 312220259, 105533203, 1166803129, 20194059, 5478229800, 1, 17672631921, 5731781295, 71539226243, 1
Offset: 1
Keywords
Examples
See the link for n = 6,8,9.
Links
- Peter Luschny, Table of n, a(n) for n = 1..1000
- Peter Luschny, Meander.
Programs
-
Maple
A200062 := proc(n) local i; add(A198060(i-1,n/i-1),i=numtheory[divisors](n)) - 2^(n-1) end: seq(A200062(i),i=1..41);
-
Mathematica
A198060[m_, n_] := Sum[ Sum[ Sum[ (-1)^(j+i)*Binomial[i, j]*Binomial[n, k]^(m+1) * (n+1)^j * (k+1)^(m-j) / (k+1)^m, {i, 0, m}], {j, 0, m}], {k, 0, n}]; a[n_] := Sum[ A198060[d-1, n/d-1], {d, Divisors[n]}] - 2^(n-1); Table[a[n], {n, 1, 41}] (* Jean-François Alcover, Jun 27 2013 *)
-
PARI
A200062(n) = { D = divisors(n); sum(m = 2, #D, d = D[m]; sum(k=0,n/d-1,binomial(n/d-1,k)^d* sum(j=0,d-1,((n/d)/(k+1))^j* sum(i=0,d-1,(-1)^(j+i)*binomial(i,j) ))))}
Formula
a(n) = Sum_{d|n} A198060(d-1,n/d-1) - 2^(n-1).
Comments