cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A199936 Total sum of Fibonacci parts in all partitions of n.

This page as a plain text file.
%I A199936 #37 Feb 21 2017 02:38:12
%S A199936 0,1,4,9,16,31,52,80,133,197,298,428,621,879,1230,1696,2329,3142,4231,
%T A199936 5619,7447,9781,12771,16553,21391,27440,35089,44600,56510,71232,89538,
%U A199936 112011,139759,173679,215279,265840,327527,402162,492703,601830,733550,891634
%N A199936 Total sum of Fibonacci parts in all partitions of n.
%H A199936 Alois P. Heinz, <a href="/A199936/b199936.txt">Table of n, a(n) for n = 0..5000</a>
%F A199936 G.f.: Sum_{i>=2} Fibonacci(i)*x^Fibonacci(i)/(1 - x^Fibonacci(i)) / Product_{j>=1} (1 - x^j). - _Ilya Gutkovskiy_, Feb 01 2017
%e A199936 For n = 6 we have:
%e A199936 --------------------------------------
%e A199936 .                         Sum of
%e A199936 Partitions            Fibonacci parts
%e A199936 --------------------------------------
%e A199936 6 .......................... 0
%e A199936 3 + 3 ...................... 6
%e A199936 4 + 2 ...................... 2
%e A199936 2 + 2 + 2 .................. 6
%e A199936 5 + 1 ...................... 6
%e A199936 3 + 2 + 1 .................. 6
%e A199936 4 + 1 + 1 .................. 2
%e A199936 2 + 2 + 1 + 1 .............. 6
%e A199936 3 + 1 + 1 + 1 .............. 6
%e A199936 2 + 1 + 1 + 1 + 1 .......... 6
%e A199936 1 + 1 + 1 + 1 + 1 + 1 ...... 6
%e A199936 ------------------------------------
%e A199936 Total ..................... 52
%e A199936 So a(6) = 52.
%p A199936 b:= proc(n, i) option remember; `if`(n=0, [1, 0], `if`(i<1, 0,
%p A199936       `if`(i>n, 0, ((p, m)-> p +`if`(issqr(m+4) or issqr(m-4),
%p A199936       [0, p[1]*i], 0))(b(n-i, i), 5*i^2)) +b(n, i-1)))
%p A199936     end:
%p A199936 a:= n-> b(n$2)[2]:
%p A199936 seq(a(n), n=0..50);  # _Alois P. Heinz_, Feb 01 2017
%t A199936 max = 42; F = Fibonacci; gf = Sum[F[i]*x^F[i]/(1-x^F[i]), {i, 2, max}] / Product[1-x^j, {j, 1, max}] + O[x]^max; CoefficientList[gf, x] (* _Jean-François Alcover_, Feb 21 2017, after _Ilya Gutkovskiy_ *)
%t A199936 b[n_, i_] := b[n, i] = If[n==0, {1, 0}, If[i<1, 0, If[i>n, 0, Function[{p, m}, p+If[IntegerQ @ Sqrt[m+4] || IntegerQ @ Sqrt[m-4], {0, p[[1]]*i}, 0] ][b[n-i, i], 5*i^2]]+b[n, i-1]]]; a[n_] := b[n, n][[2]]; Table[a[n], {n, 0, 50}] (* _Jean-François Alcover_, Feb 21 2017, after _Alois P. Heinz_ *)
%Y A199936 Cf. A000045, A066186, A073118, A144115, A194544, A194545.
%K A199936 nonn
%O A199936 0,3
%A A199936 _Omar E. Pol_, Nov 21 2011
%E A199936 More terms from _Alois P. Heinz_, Nov 21 2011