This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A199949 #26 Feb 08 2025 22:59:13 %S A199949 6,5,9,2,6,6,0,4,5,7,6,6,9,4,6,0,7,4,5,3,7,3,4,8,5,7,9,5,6,3,0,6,7,6, %T A199949 1,1,6,1,5,3,2,8,0,2,1,6,4,4,5,1,6,7,9,7,3,6,0,9,4,5,1,3,0,3,1,4,1,0, %U A199949 7,3,6,4,4,5,5,8,7,4,2,6,6,2,4,4,0,7,1,9,5,1,9,3,1,6,4,1,4,4,7 %N A199949 Decimal expansion of least x satisfying x^2 + cos(x) = 2*sin(x). %C A199949 For many choices of a,b,c, there are exactly two numbers x>0 satisfying a*x^2+b*cos(x)=c*sin(x). %C A199949 Guide to related sequences, with graphs included in Mathematica programs: %C A199949 a.... b.... c.... least x, greatest x %C A199949 1.... 1.... 2.... A199949, A199950 %C A199949 1.... 1.... 3.... A199951, A199952 %C A199949 1.... 1.... 4.... A199953, A199954 %C A199949 1.... 2.... 3.... A199955, A199956 %C A199949 1.... 2.... 4.... A199957, A199958 %C A199949 1.... 3.... 3.... A199959, A199960 %C A199949 1.... 3.... 4.... A199961, A199962 %C A199949 1.... 4.... 3.... A199963, A199964 %C A199949 1.... 4.... 4.... A199965, A199966 %C A199949 2.... 1.... 3.... A199967, A200003 %C A199949 2.... 1.... 4.... A200004, A200005 %C A199949 3.... 1.... 4.... A200006, A200007 %C A199949 4.... 1.... 4.... A200008, A200009 %C A199949 1... -1.... 1.... A200010, A200011 %C A199949 1... -1.... 2.... A200012, A200013 %C A199949 1... -1.... 3.... A200014, A200015 %C A199949 1... -1.... 4.... A200016, A200017 %C A199949 1... -2.... 1.... A200018, A200019 %C A199949 1... -2.... 2.... A200020, A200021 %C A199949 1... -2.... 3.... A200022, A200023 %C A199949 1... -2.... 4.... A200024, A200025 %C A199949 1... -3.... 1.... A200026, A200027 %C A199949 1... -3.... 2.... A200093, A200094 %C A199949 1... -3.... 3.... A200095, A200096 %C A199949 1... -3.... 4.... A200097, A200098 %C A199949 1... -4.... 1.... A200099, A200100 %C A199949 1... -4.... 2.... A200101, A200102 %C A199949 1... -4.... 3.... A200103, A200104 %C A199949 1... -4.... 4.... A200105, A200106 %C A199949 2... -1.... 1.... A200107, A200108 %C A199949 2... -1.... 2.... A200109, A200110 %C A199949 2... -1.... 3.... A200111, A200112 %C A199949 2... -1.... 4.... A200114, A200115 %C A199949 2... -2.... 1.... A200116, A200117 %C A199949 2... -2.... 3.... A200118, A200119 %C A199949 2... -3.... 1.... A200120, A200121 %C A199949 2... -3.... 2.... A200122, A200123 %C A199949 2... -3.... 3.... A200124, A200125 %C A199949 2... -3.... 4.... A200126, A200127 %C A199949 2... -4.... 1.... A200128, A200129 %C A199949 2... -4.... 3.... A200130, A200131 %C A199949 3... -1.... 1.... A200132, A200133 %C A199949 3... -1.... 2.... A200223, A200224 %C A199949 3... -1.... 3.... A200225, A200226 %C A199949 3... -1.... 4.... A200227, A200228 %C A199949 3... -2.... 1.... A200229, A200230 %C A199949 3... -2.... 2.... A200231, A200232 %C A199949 3... -2.... 3.... A200233, A200234 %C A199949 3... -2.... 4.... A200235, A200236 %C A199949 3... -3.... 1.... A200237, A200238 %C A199949 3... -3.... 2.... A200239, A200240 %C A199949 3... -3.... 4.... A200241, A200242 %C A199949 3... -4.... 1.... A200277, A200278 %C A199949 3... -4.... 2.... A200279, A200280 %C A199949 3... -4.... 3.... A200281, A200282 %C A199949 3... -4.... 4.... A200283, A200284 %C A199949 4... -1.... 1.... A200285, A200286 %C A199949 4... -1.... 2.... A200287, A200288 %C A199949 4... -1.... 3.... A200289, A200290 %C A199949 4... -1.... 4.... A200291, A200292 %C A199949 4... -2.... 1.... A200293, A200294 %C A199949 4... -2.... 3.... A200295, A200296 %C A199949 4... -3.... 1.... A200299, A200300 %C A199949 4... -3.... 2.... A200297, A200298 %C A199949 4... -3.... 3.... A200301, A200302 %C A199949 4... -3.... 4.... A200303, A200304 %C A199949 4... -4.... 1.... A200305, A200306 %C A199949 4... -4.... 3.... A200307, A200308 %C A199949 Suppose that f(x,u,v) is a function of three real variables and that g(u,v) is a function defined implicitly by f(g(u,v),u,v)=0. We call the graph of z=g(u,v) an implicit surface of f. %C A199949 For an example related to A199949, take f(x,u,v)=x^2+u*cos(x)-v*sin(x) and g(u,v) = a nonzero solution x of f(x,u,v)=0. If there is more than one nonzero solution, care must be taken to ensure that the resulting function g(u,v) is single-valued and continuous. A portion of an implicit surface is plotted by Program 2 in the Mathematica section. %H A199949 G. C. Greubel, <a href="/A199949/b199949.txt">Table of n, a(n) for n = 0..10000</a> %H A199949 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %e A199949 least x: 0.659266045766946074537348579563067611... %e A199949 greatest x: 1.2710268008159460640047188480978502... %t A199949 (* Program 1: A199949 *) %t A199949 a = 1; b = 1; c = 2; %t A199949 f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x] %t A199949 Plot[{f[x], g[x]}, {x, -1, 2}, {AxesOrigin -> {0, 0}}] %t A199949 r = x /. FindRoot[f[x] == g[x], {x, .65, .66}, WorkingPrecision -> 110] %t A199949 RealDigits[r] (* A199949 *) %t A199949 r = x /. FindRoot[f[x] == g[x], {x, 1.27, 1.28}, WorkingPrecision -> 110] %t A199949 RealDigits[r] (* A199950 *) %t A199949 (* Program 2: implicit surface of x^2+u*cos(x)=v*sin(x) *) %t A199949 f[{x_, u_, v_}] := x^2 + u*Cos[x] - v*Sin[x]; %t A199949 t = Table[{u, v, x /. FindRoot[f[{x, u, v}] == 0, {x, 0, 1}]}, {u, -5, 0}, {v, 0, 1}]; %t A199949 ListPlot3D[Flatten[t, 1]] (* for A199949 *) %o A199949 (PARI) a=1; b=1; c=2; solve(x=0, 1, a*x^2 + b*cos(x) - c*sin(x)) \\ _G. C. Greubel_, Jul 05 2018 %Y A199949 Cf. A199950. %K A199949 nonn,cons %O A199949 0,1 %A A199949 _Clark Kimberling_, Nov 12 2011 %E A199949 A-number corrected by _Jaroslav Krizek_, Nov 27 2011