This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A199950 #13 Feb 08 2025 22:59:53 %S A199950 1,2,7,1,0,2,6,8,0,0,8,1,5,9,4,6,0,6,4,0,0,4,7,1,8,8,4,8,0,9,7,8,5,0, %T A199950 2,6,8,3,5,6,7,1,1,8,3,7,6,7,9,9,9,2,6,8,7,3,8,7,9,6,8,1,1,5,1,0,2,3, %U A199950 1,8,6,7,8,7,9,3,0,1,8,4,4,1,3,4,8,9,7,8,1,8,9,6,1,6,3,0,1,2,9 %N A199950 Decimal expansion of greatest x satisfying x^2 + cos(x) = 2*sin(x). %C A199950 See A199949 for a guide to related sequences. The Mathematica program includes a graph. %H A199950 G. C. Greubel, <a href="/A199950/b199950.txt">Table of n, a(n) for n = 1..10000</a> %H A199950 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %e A199950 least x: 0.659266045766946074537348579563067611... %e A199950 greatest x: 1.271026800815946064004718848097850268... %t A199950 a = 1; b = 1; c = 2; %t A199950 f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x] %t A199950 Plot[{f[x], g[x]}, {x, -1, 2}, {AxesOrigin -> {0, 0}}] %t A199950 r = x /. FindRoot[f[x] == g[x], {x, .65, .66}, WorkingPrecision -> 110] %t A199950 RealDigits[r] (* A199949 *) %t A199950 r = x /. FindRoot[f[x] == g[x], {x, 1.27, 1.28}, WorkingPrecision -> 110] %t A199950 RealDigits[r] (* A199950 *) %o A199950 (PARI) a=1; b=1; c=2; solve(x=1, 2, a*x^2 + b*cos(x) - c*sin(x)) \\ _G. C. Greubel_, Jul 05 2018 %Y A199950 Cf. A199949. %K A199950 nonn,cons %O A199950 1,2 %A A199950 _Clark Kimberling_, Nov 12 2011