This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A199955 #11 Feb 08 2025 23:03:55 %S A199955 7,4,0,8,0,3,3,6,8,1,9,4,1,3,2,2,3,7,5,9,6,4,2,6,9,2,4,5,4,7,0,2,1,6, %T A199955 2,0,9,1,7,4,2,2,2,8,9,0,7,8,0,2,3,4,5,7,2,1,8,9,5,4,4,9,0,1,2,0,5,4, %U A199955 3,8,4,6,0,9,7,7,9,3,0,5,3,8,2,4,5,9,1,8,8,0,7,9,2,0,2,3,7,7,4 %N A199955 Decimal expansion of least x satisfying x^2+2*cos(x)=3*sin(x). %C A199955 See A199949 for a guide to related sequences. The Mathematica program includes a graph. %H A199955 G. C. Greubel, <a href="/A199955/b199955.txt">Table of n, a(n) for n = 0..10000</a> %H A199955 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %e A199955 least x: 0.74080336819413223759642692454702162091742... %e A199955 greatest x: 1.854778410356751774141939581736998761204... %t A199955 a = 1; b = 2; c = 3; %t A199955 f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x] %t A199955 Plot[{f[x], g[x]}, {x, -1, 3}, {AxesOrigin -> {0, 0}}] %t A199955 r = x /. FindRoot[f[x] == g[x], {x, .74, .75}, WorkingPrecision -> 110] %t A199955 RealDigits[r] (* A199955 *) %t A199955 r = x /. FindRoot[f[x] == g[x], {x, 1.8, 1.9}, WorkingPrecision -> 110] %t A199955 RealDigits[r] (* A199956 *) %o A199955 (PARI) a=1; b=2; c=3; solve(x=1, 2, a*x^2 + b*cos(x) - c*sin(x)) \\ _G. C. Greubel_, Jun 22 2018 %Y A199955 Cf. A199949. %K A199955 nonn,cons %O A199955 0,1 %A A199955 _Clark Kimberling_, Nov 12 2011