This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A199956 #12 Feb 08 2025 23:04:00 %S A199956 1,8,5,4,7,7,8,4,1,0,3,5,6,7,5,1,7,7,4,1,4,1,9,3,9,5,8,1,7,3,6,9,9,8, %T A199956 7,6,1,2,0,4,0,2,7,3,4,6,6,2,5,0,8,3,5,1,5,6,1,8,5,4,3,4,9,8,5,1,4,3, %U A199956 3,5,0,3,4,7,8,0,5,7,7,0,2,7,3,9,6,7,0,0,4,1,6,7,4,8,0,9,8,5,4 %N A199956 Decimal expansion of greatest x satisfying x^2 + 2*cos(x) = 3*sin(x). %C A199956 See A199949 for a guide to related sequences. The Mathematica program includes a graph. %H A199956 G. C. Greubel, <a href="/A199956/b199956.txt">Table of n, a(n) for n = 1..10000</a> %H A199956 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %e A199956 least x: 0.74080336819413223759642692454702162091742... %e A199956 greatest x: 1.854778410356751774141939581736998761204... %t A199956 a = 1; b = 2; c = 3; %t A199956 f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x] %t A199956 Plot[{f[x], g[x]}, {x, -1, 3}, {AxesOrigin -> {0, 0}}] %t A199956 r = x /. FindRoot[f[x] == g[x], {x, .74, .75}, WorkingPrecision -> 110] %t A199956 RealDigits[r] (* A199955 *) %t A199956 r = x /. FindRoot[f[x] == g[x], {x, 1.8, 1.9}, WorkingPrecision -> 110] %t A199956 RealDigits[r] (* A199956 *) %o A199956 (PARI) a=1; b=2; c=3; solve(x=.5, 1, a*x^2 + b*cos(x) - c*sin(x)) \\ _G. C. Greubel_, Jun 22 2018 %Y A199956 Cf. A199949. %K A199956 nonn,cons %O A199956 1,2 %A A199956 _Clark Kimberling_, Nov 12 2011