This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A199986 #27 Feb 12 2021 14:52:16 %S A199986 2,12,21,112,121,211,1112,1121,1211,2111,11112,11121,11211,12111, %T A199986 21111,111112,111121,111211,112111,121111,211111,1111112,1111121, %U A199986 1111211,1112111,1121111,1211111,2111111,11111112,11111121,11111211,11112111,11121111,11211111 %N A199986 Numbers with digital product = 2. %C A199986 Subsequence of A034049. %H A199986 Robert Israel, <a href="/A199986/b199986.txt">Table of n, a(n) for n = 1..10000</a> %H A199986 S. Giraudo, <a href="http://arxiv.org/abs/1306.6938">Combinatorial operads from monoids</a>, arXiv preprint arXiv:1306.6938 [math.CO], 2013-2015. See Sect. 3.2.1. %p A199986 f:= proc(d) local b,i; %p A199986 b:= (10^d-1)/9; %p A199986 seq(b+10^i,i=0..d-1); %p A199986 end proc: %p A199986 seq(f(d),d=1..9); # _Robert Israel_, Jan 13 2021 %o A199986 (PARI) one(n)=if(n,10^n\9,"") %o A199986 for(n=0,9,for(m=0,n,print1(one(n-m)2one(m)", "))) \\ _Charles R Greathouse IV_, Nov 13 2011 %o A199986 (Python) %o A199986 def athrough(k1s): %o A199986 return [int("1"*(i-j)+"2"+"1"*j) for i in range(k1s+1) for j in range(i+1)] %o A199986 print(athrough(8)) # _Michael S. Branicky_, Feb 12 2021 %K A199986 nonn,easy,base %O A199986 1,1 %A A199986 _Jaroslav Krizek_, Nov 13 2011