cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A200003 Decimal expansion of greatest x satisfying 2*x^2 + cos(x) = 3*sin(x).

This page as a plain text file.
%I A200003 #17 Feb 12 2025 04:48:22
%S A200003 9,8,9,4,5,0,0,1,4,4,9,3,9,4,9,1,6,7,4,8,9,7,8,8,3,3,2,6,9,5,7,1,4,9,
%T A200003 7,5,5,4,8,1,1,9,5,4,8,4,6,2,4,1,2,6,4,4,4,2,2,0,0,1,6,0,8,4,4,9,9,6,
%U A200003 8,2,5,8,2,7,1,5,4,1,8,2,4,3,0,4,3,1,8,3,2,4,6,9,5,2,6,3,9,1,6
%N A200003 Decimal expansion of greatest x satisfying 2*x^2 + cos(x) = 3*sin(x).
%C A200003 See A199949 for a guide to related sequences. The Mathematica program includes a graph.
%H A200003 G. C. Greubel, <a href="/A200003/b200003.txt">Table of n, a(n) for n = 0..10000</a>
%H A200003 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>.
%e A200003 least x:  0.45041223638324913376478190783839778...
%e A200003 greatest x: 0.989450014493949167489788332695714...
%t A200003 a = 2; b = 1; c = 3;
%t A200003 f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]
%t A200003 Plot[{f[x], g[x]}, {x, -.1, 2}, {AxesOrigin -> {0, 0}}]
%t A200003 r = x /. FindRoot[f[x] == g[x], {x, .4, .5}, WorkingPrecision -> 110]
%t A200003 RealDigits[r]  (* A199967 *)
%t A200003 r = x /. FindRoot[f[x] == g[x], {x, .98, .99}, WorkingPrecision -> 110]
%t A200003 RealDigits[r]  (* A200003 *)
%o A200003 (PARI) a=2; b=1; c=3; solve(x=0.75, 1, a*x^2 + b*cos(x) - c*sin(x)) \\ _G. C. Greubel_, Jun 23 2018
%Y A200003 Cf. A199949.
%K A200003 nonn,cons
%O A200003 0,1
%A A200003 _Clark Kimberling_, Nov 12 2011