This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A200008 #16 Feb 12 2025 04:50:19 %S A200008 4,0,3,9,5,4,8,5,6,2,7,7,0,9,9,0,5,7,8,7,9,3,5,3,4,4,6,4,2,2,1,1,0,4, %T A200008 1,1,1,7,5,9,3,5,1,4,1,8,7,3,6,5,1,0,3,8,3,8,8,8,5,6,4,5,4,9,5,7,2,7, %U A200008 5,8,6,8,5,8,4,8,9,0,1,6,0,8,0,0,5,2,9,6,5,2,1,1,0,7,6,1,7,1,7 %N A200008 Decimal expansion of least x satisfying 4*x^2 + cos(x) = 4*sin(x). %C A200008 See A199949 for a guide to related sequences. The Mathematica program includes a graph. %H A200008 G. C. Greubel, <a href="/A200008/b200008.txt">Table of n, a(n) for n = 0..10000</a> %H A200008 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %H A200008 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %e A200008 least x: 0.4039548562770990578793534464221104111... %e A200008 greatest x: 0.5924702907925039329312822762880632483... %t A200008 a = 4; b = 1; c = 4; %t A200008 f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x] %t A200008 Plot[{f[x], g[x]}, {x, .3, .7}, {AxesOrigin -> {0, 0}}] %t A200008 r = x /. FindRoot[f[x] == g[x], {x, .40, .41}, WorkingPrecision -> 110] %t A200008 RealDigits[r] (* A200008 *) %t A200008 r = x /. FindRoot[f[x] == g[x], {x, .59, .60}, WorkingPrecision -> 110] %t A200008 RealDigits[r] (* A200009 *) %o A200008 (PARI) a=4; b=1; c=4; solve(x=0, .5, a*x^2 + b*cos(x) - c*sin(x)) \\ _G. C. Greubel_, Jun 23 2018 %Y A200008 Cf. A199949. %K A200008 nonn,cons %O A200008 0,1 %A A200008 _Clark Kimberling_, Nov 12 2011