This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A200010 #15 Feb 12 2025 04:51:39 %S A200010 5,6,0,9,8,7,7,2,9,2,3,5,9,1,1,3,7,5,2,7,7,4,3,7,0,2,8,5,3,3,6,6,8,2, %T A200010 3,1,7,9,9,0,9,2,1,5,5,1,9,4,7,5,5,4,2,4,5,2,8,3,2,9,7,2,2,5,4,0,7,4, %U A200010 4,5,9,4,6,4,3,0,6,8,8,2,4,4,1,5,5,2,8,5,5,6,6,3,2,9,2,4,0,7,9 %N A200010 Decimal expansion of least x satisfying x^2 - cos(x) = sin(x), negated. %C A200010 See A199949 for a guide to related sequences. The Mathematica program includes a graph. %H A200010 G. C. Greubel, <a href="/A200010/b200010.txt">Table of n, a(n) for n = 0..10000</a> %H A200010 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %e A200010 least x: -0.560987729235911375277437028533668231799... %e A200010 greatest x: 1.14955462727747318906952249474440902011... %t A200010 a = 1; b = -1; c = 1; %t A200010 f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x] %t A200010 Plot[{f[x], g[x]}, {x, -1, 2}, {AxesOrigin -> {0, 0}}] %t A200010 r = x /. FindRoot[f[x] == g[x], {x, -.6, -.5}, WorkingPrecision -> 110] %t A200010 RealDigits[r] (* A200010 *) %t A200010 r = x /. FindRoot[f[x] == g[x], {x, 1.1, 1.2}, WorkingPrecision -> 110] %t A200010 RealDigits[r] (* A200011 *) %o A200010 (PARI) a=1; b=-1; c=1; solve(x=-1, 0, a*x^2 + b*cos(x) - c*sin(x)) \\ _G. C. Greubel_, Jun 23 2018 %Y A200010 Cf. A199949. %K A200010 nonn,cons %O A200010 0,1 %A A200010 _Clark Kimberling_, Nov 12 2011