This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A200012 #16 Feb 12 2025 04:51:36 %S A200012 3,9,4,1,2,4,1,9,2,8,5,8,9,7,5,9,6,0,0,9,9,7,0,5,3,9,9,3,5,4,5,9,0,0, %T A200012 9,8,5,3,6,9,2,2,4,9,6,1,9,3,9,1,2,2,9,7,9,2,1,9,8,4,8,1,1,6,8,5,3,1, %U A200012 1,8,7,4,1,7,6,0,2,4,8,1,7,9,3,5,8,3,4,5,6,0,3,0,7,1,7,9,2,1,5 %N A200012 Decimal expansion of least x satisfying x^2 - cos(x) = 2*sin(x) (negated). %C A200012 See A199949 for a guide to related sequences. The Mathematica program includes a graph. %H A200012 G. C. Greubel, <a href="/A200012/b200012.txt">Table of n, a(n) for n = 0..10000</a> %H A200012 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %e A200012 least x: -0.3941241928589759600997053993545900... %e A200012 greatest x: 1.450938449634974431128285576690357738... %t A200012 a = 1; b = -1; c = 2; %t A200012 f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x] %t A200012 Plot[{f[x], g[x]}, {x, -1, 2}, {AxesOrigin -> {0, 0}}] %t A200012 r = x /. FindRoot[f[x] == g[x], {x, -.4, -.3}, WorkingPrecision -> 110] %t A200012 RealDigits[r] (* A200012 *) %t A200012 r = x /. FindRoot[f[x] == g[x], {x, 1.4, 1.5}, WorkingPrecision -> 110] %t A200012 RealDigits[r] (* A200013 *) %o A200012 (PARI) a=1; b=-1; c=2; solve(x=-1, 0, a*x^2 + b*cos(x) - c*sin(x)) \\ _G. C. Greubel_, Jun 23 2018 %Y A200012 Cf. A199949. %K A200012 nonn,cons %O A200012 0,1 %A A200012 _Clark Kimberling_, Nov 12 2011