This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A200013 #14 Feb 12 2025 04:51:45 %S A200013 1,4,5,0,9,3,8,4,4,9,6,3,4,9,7,4,4,3,1,1,2,8,2,8,5,5,7,6,6,9,0,3,5,7, %T A200013 7,3,8,9,4,4,7,4,8,7,0,1,1,5,3,4,6,3,9,8,7,6,5,4,2,3,5,8,6,2,6,2,9,6, %U A200013 1,9,2,8,4,3,0,8,1,3,5,0,5,9,1,7,2,0,8,4,3,0,4,9,7,0,9,4,6,6,0 %N A200013 Decimal expansion of greatest x satisfying x^2 - cos(x) = 2*sin(x). %C A200013 See A199949 for a guide to related sequences. The Mathematica program includes a graph. %H A200013 G. C. Greubel, <a href="/A200013/b200013.txt">Table of n, a(n) for n = 1..10000</a> %H A200013 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %e A200013 least x: -0.3941241928589759600997053993545900... %e A200013 greatest x: 1.450938449634974431128285576690357... %t A200013 a = 1; b = -1; c = 2; %t A200013 f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x] %t A200013 Plot[{f[x], g[x]}, {x, -1, 2}, {AxesOrigin -> {0, 0}}] %t A200013 r = x /. FindRoot[f[x] == g[x], {x, -.4, -.3}, WorkingPrecision -> 110] %t A200013 RealDigits[r] (* A200012 *) %t A200013 r = x /. FindRoot[f[x] == g[x], {x, 1.4, 1.5}, WorkingPrecision -> 110] %t A200013 RealDigits[r] (* A200013 *) %o A200013 (PARI) a=1; b=-1; c=2; solve(x=1, 2, a*x^2 + b*cos(x) - c*sin(x)) \\ _G. C. Greubel_, Jun 23 2018 %Y A200013 Cf. A199949. %K A200013 nonn,cons %O A200013 1,2 %A A200013 _Clark Kimberling_, Nov 12 2011