This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A200017 #11 Feb 12 2025 04:52:48 %S A200017 1,8,7,5,2,0,0,6,8,8,7,5,6,6,9,0,1,3,7,0,0,0,9,9,5,4,4,2,7,0,2,2,4,9, %T A200017 1,3,9,1,5,1,8,7,1,7,6,0,4,2,4,5,7,9,4,7,0,6,9,5,5,6,0,1,4,9,5,6,5,1, %U A200017 5,3,3,6,8,6,6,1,5,7,7,6,9,0,2,9,6,4,3,2,2,4,4,2,9,3,0,2,1,2,4 %N A200017 Decimal expansion of greatest x satisfying x^2 - cos(x) = 4*sin(x). %C A200017 See A199949 for a guide to related sequences. The Mathematica program includes a graph. %H A200017 G. C. Greubel, <a href="/A200017/b200017.txt">Table of n, a(n) for n = 1..10000</a> %H A200017 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %e A200017 least x: -0.231931736508077068279216295078080... %e A200017 greatest x: 1.87520068875669013700099544270224... %t A200017 a = 1; b = -1; c = 4; %t A200017 f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x] %t A200017 Plot[{f[x], g[x]}, {x, -1, 2}, {AxesOrigin -> {0, 0}}] %t A200017 r = x /. FindRoot[f[x] == g[x], {x, -.24, -.23}, WorkingPrecision -> 110] %t A200017 RealDigits[r] (* A200016 *) %t A200017 r = x /. FindRoot[f[x] == g[x], {x, 1.87, 1.88}, WorkingPrecision -> 110] %t A200017 RealDigits[r] (* A200017 *) %o A200017 (PARI) a=1; b=-1; c=4; solve(x=1, 2, a*x^2 + b*cos(x) - c*sin(x)) \\ _G. C. Greubel_, Jun 24 2018 %Y A200017 Cf. A199949. %K A200017 nonn,cons %O A200017 1,2 %A A200017 _Clark Kimberling_, Nov 12 2011