This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A200023 #11 Feb 12 2025 04:58:21 %S A200023 1,6,6,9,6,9,2,1,6,9,6,4,9,7,6,3,4,5,8,2,5,2,8,3,8,3,0,5,9,8,4,9,1,7, %T A200023 3,3,5,9,3,7,7,5,8,9,9,6,5,9,1,6,9,9,1,6,8,2,8,2,4,0,8,4,9,6,1,1,2,9, %U A200023 1,0,5,6,2,3,4,4,1,3,3,4,1,9,3,2,5,7,8,3,8,7,2,9,5,5,6,9,3,4,7 %N A200023 Decimal expansion of greatest x satisfying x^2 - 2*cos(x) = 3*sin(x). %C A200023 See A199949 for a guide to related sequences. The Mathematica program includes a graph. %H A200023 G. C. Greubel, <a href="/A200023/b200023.txt">Table of n, a(n) for n = 1..10000</a> %H A200023 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %e A200023 least x: -0.514514830476458686565638945675371815952... %e A200023 greatest x: 1.66969216964976345825283830598491733593... %t A200023 a = 1; b = -2; c = 3; %t A200023 f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x] %t A200023 Plot[{f[x], g[x]}, {x, -1, 2}, {AxesOrigin -> {0, 0}}] %t A200023 r = x /. FindRoot[f[x] == g[x], {x, -.52, -.51}, WorkingPrecision -> 110] %t A200023 RealDigits[r] (* A200022 *) %t A200023 r = x /. FindRoot[f[x] == g[x], {x, 1.66, 1.67}, WorkingPrecision -> 110] %t A200023 RealDigits[r] (* A200023 *) %o A200023 (PARI) a=1; b=-2; c=3; solve(x=1, 2, a*x^2 + b*cos(x) - c*sin(x)) \\ _G. C. Greubel_, Jun 24 2018 %Y A200023 Cf. A199949. %K A200023 nonn,cons %O A200023 1,2 %A A200023 _Clark Kimberling_, Nov 13 2011