This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A200025 #11 Feb 12 2025 04:58:17 %S A200025 1,8,3,0,7,3,3,4,5,3,2,9,0,8,6,3,5,9,9,2,1,0,2,3,5,9,5,4,7,3,4,1,4,7, %T A200025 8,8,4,5,3,6,6,7,8,1,2,8,3,2,4,2,1,4,9,5,2,2,9,5,8,1,6,4,2,6,7,1,0,0, %U A200025 0,8,5,1,1,9,4,6,2,3,6,2,0,3,8,0,5,5,4,6,3,7,8,8,4,3,4,1,1,3,7 %N A200025 Decimal expansion of greatest x satisfying x^2 - 2*cos(x) = 4*sin(x). %C A200025 See A199949 for a guide to related sequences. The Mathematica program includes a graph. %H A200025 G. C. Greubel, <a href="/A200025/b200025.txt">Table of n, a(n) for n = 1..10000</a> %H A200025 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %e A200025 least x: -0.42352729471869116185741155509692883402... %e A200025 greatest x: 1.8307334532908635992102359547341478845... %t A200025 a = 1; b = -2; c = 4; %t A200025 f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x] %t A200025 Plot[{f[x], g[x]}, {x, -1, 2}, {AxesOrigin -> {0, 0}}] %t A200025 r = x /. FindRoot[f[x] == g[x], {x, -.43, -.42}, WorkingPrecision -> 110] %t A200025 RealDigits[r] (* A200024 *) %t A200025 r = x /. FindRoot[f[x] == g[x], {x, 1.83, 1.84}, WorkingPrecision -> 110] %t A200025 RealDigits[r] (* A200025 *) %o A200025 (PARI) a=1; b=-2; c=4; solve(x=1, 2, a*x^2 + b*cos(x) - c*sin(x)) \\ _G. C. Greubel_, Jun 24 2018 %Y A200025 Cf. A199949. %K A200025 nonn,cons %O A200025 1,2 %A A200025 _Clark Kimberling_, Nov 13 2011