A200053 Number of -4..4 arrays X (0..n-1) of n elements with zero sum and elements alternately strictly increasing and strictly decreasing.
1, 8, 36, 172, 840, 4172, 20978, 106674, 545698, 2811236, 14534258, 75522854, 393338058, 2056376914, 10767639532, 56550307652, 297322835298, 1567022163228, 8265441146830, 43685281805084, 231022736833454, 1223830782531260
Offset: 1
Keywords
Examples
Some solutions for n=6: .-2....2...-1...-3...-2....4....0...-1....0....2...-4....2...-1....0....0....1 ..2...-3....4....1....2....0....4....3...-2....0....2....4....2....4....2....0 ..1....2...-3....0...-1....3...-3...-1....4....2...-1....0...-3...-2...-2....2 ..4...-1....0....4....0...-3....3....4...-4...-3....1....1....1....1....1...-4 .-3....1...-2...-3...-3....0...-3...-3....2....1...-2...-4....0...-2...-3....4 .-2...-1....2....1....4...-4...-1...-2....0...-2....4...-3....1...-1....2...-3
Links
- R. H. Hardin, Table of n, a(n) for n = 1..200
Crossrefs
Cf. A200057.
Programs
-
Maple
T:= proc(a,n,s) option remember; if n = 1 then if s = a then 1 else 0 fi else add(procname(-j,n-1,a-s), j=a+1..4) fi end proc: A:= proc(n) 2*add(T(a,n,0),a=-4..4) end proc: A(1):= 1: seq(A(n), n=1..30); # Robert Israel, Nov 19 2014
Comments