A200059 Number of -n..n arrays x(0..4) of 5 elements with zero sum and elements alternately strictly increasing and strictly decreasing.
6, 68, 288, 840, 1948, 3914, 7074, 11862, 18732, 28244, 40970, 57598, 78816, 105444, 138284, 178282, 226362, 283598, 351026, 429852, 521230, 626492, 746910, 883944, 1038982, 1213616, 1409348, 1627896, 1870884, 2140158, 2437454, 2764750, 3123900
Offset: 1
Keywords
Examples
Some solutions for n=6: ..1...-1....3...-6...-4...-1....1....4....6...-3....5...-1....1....1....1...-2 ..0....2...-6....2....3...-5....2...-6...-1...-5...-6....2...-1....5...-2....6 ..1...-2....4...-3...-3....5...-6....3....3....5....6...-4....4...-2....2...-5 .-3....5...-5....4....4...-1....4...-3...-5....1...-4....2...-3...-1...-5....1 ..1...-4....4....3....0....2...-1....2...-3....2...-1....1...-1...-3....4....0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..200
Crossrefs
Cf. A200057.
Formula
Empirical: a(n) = 2*a(n-1) -a(n-3) -2*a(n-5) +2*a(n-6) +a(n-8) -2*a(n-10) +a(n-11).
Empirical g.f.: 2*x*(3 + 28*x + 76*x^2 + 135*x^3 + 168*x^4 + 159*x^5 + 105*x^6 + 51*x^7 + 10*x^8 + x^9) / ((1 - x)^5*(1 + x)^2*(1 + x^2)*(1 + x + x^2)). - Colin Barker, May 17 2018
Comments