cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A200062 Meanders of length n and central angle < 360 degrees.

Original entry on oeis.org

0, 1, 1, 4, 1, 15, 1, 41, 23, 133, 1, 650, 1, 1725, 961, 6930, 1, 30323, 1, 99716, 40431, 352729, 1, 1709125, 35467, 5200315, 2008233, 20960538, 1, 93058849, 1, 312220259, 105533203, 1166803129, 20194059, 5478229800, 1, 17672631921, 5731781295, 71539226243, 1
Offset: 1

Views

Author

Peter Luschny, Nov 16 2011

Keywords

Comments

A meander is a closed curve drawn by arcs of equal length and central angles of equal magnitude, starting with a positively oriented arc.
a(n) = 1 if and only if n is prime.

Examples

			See the link for n = 6,8,9.
		

Crossrefs

Programs

  • Maple
    A200062 := proc(n) local i;
    add(A198060(i-1,n/i-1),i=numtheory[divisors](n)) - 2^(n-1) end: seq(A200062(i),i=1..41);
  • Mathematica
    A198060[m_, n_] := Sum[ Sum[ Sum[ (-1)^(j+i)*Binomial[i, j]*Binomial[n, k]^(m+1) * (n+1)^j * (k+1)^(m-j) / (k+1)^m, {i, 0, m}], {j, 0, m}], {k, 0, n}]; a[n_] := Sum[ A198060[d-1, n/d-1], {d, Divisors[n]}] - 2^(n-1); Table[a[n], {n, 1, 41}] (* Jean-François Alcover, Jun 27 2013 *)
  • PARI
    A200062(n) = { D = divisors(n);
    sum(m = 2, #D, d = D[m];
       sum(k=0,n/d-1,binomial(n/d-1,k)^d*
          sum(j=0,d-1,((n/d)/(k+1))^j*
              sum(i=0,d-1,(-1)^(j+i)*binomial(i,j)
    ))))}

Formula

a(n) = Sum_{d|n} A198060(d-1,n/d-1) - 2^(n-1).