This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A200098 #12 Feb 12 2025 09:53:28 %S A200098 1,7,9,6,4,6,7,4,1,8,6,3,5,0,0,8,4,2,7,0,7,8,8,5,2,3,6,6,1,4,9,4,9,0, %T A200098 9,3,7,7,3,8,6,0,8,3,6,2,1,3,7,1,9,9,8,4,1,8,1,9,2,1,5,3,1,6,9,4,3,4, %U A200098 1,7,4,7,5,9,0,5,3,9,8,9,7,9,9,3,1,0,0,7,7,3,9,4,9,0,9,4,3,3,5 %N A200098 Decimal expansion of greatest x satisfying x^2 - 3*cos(x) = 4*sin(x). %C A200098 See A199949 for a guide to related sequences. The Mathematica program includes a graph. %H A200098 G. C. Greubel, <a href="/A200098/b200098.txt">Table of n, a(n) for n = 1..10000</a> %H A200098 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %e A200098 least x: -0.576891176962186435752436597718261688130... %e A200098 greatest x: 1.79646741863500842707885236614949093773... %t A200098 a = 1; b = -3; c = 4; %t A200098 f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x] %t A200098 Plot[{f[x], g[x]}, {x, -3, 3}, {AxesOrigin -> {0, 0}}] %t A200098 r = x /. FindRoot[f[x] == g[x], {x, -.58, -.57}, WorkingPrecision -> 110] %t A200098 RealDigits[r] (* A200097 *) %t A200098 r = x /. FindRoot[f[x] == g[x], {x, 1.79, 1.80}, WorkingPrecision -> 110] %t A200098 RealDigits[r] (* A200098 *) %o A200098 (PARI) a=1; b=-3; c=4; solve(x=1, 2, a*x^2 + b*cos(x) - c*sin(x)) \\ _G. C. Greubel_, Jun 24 2018 %Y A200098 Cf. A199949. %K A200098 nonn,cons %O A200098 1,2 %A A200098 _Clark Kimberling_, Nov 13 2011