This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A200099 #13 Feb 12 2025 09:54:21 %S A200099 1,0,5,3,3,5,2,9,8,3,6,0,0,1,5,3,7,3,3,2,8,1,1,1,0,1,5,7,9,9,9,4,6,8, %T A200099 4,6,4,9,7,0,2,8,5,2,7,9,2,2,5,9,2,3,5,3,4,2,2,3,2,3,5,1,9,8,5,0,7,9, %U A200099 9,4,3,8,1,7,4,0,4,9,1,8,0,3,9,2,4,8,9,8,6,2,2,7,8,6,5,8,5,5,7 %N A200099 Decimal expansion of least x satisfying x^2 - 4*cos(x) = sin(x), negated. %C A200099 See A199949 for a guide to related sequences. The Mathematica program includes a graph. %H A200099 G. C. Greubel, <a href="/A200099/b200099.txt">Table of n, a(n) for n = 1..10000</a> %H A200099 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %e A200099 least x: -1.053352983600153733281110157999... %e A200099 greatest x: 1.35457555821585784490890770164646... %t A200099 a = 1; b = -4; c = 1; %t A200099 f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x] %t A200099 Plot[{f[x], g[x]}, {x, -3, 3}, {AxesOrigin -> {0, 0}}] %t A200099 r = x /. FindRoot[f[x] == g[x], {x, -1.06, -1.05}, WorkingPrecision -> 110] %t A200099 RealDigits[r] (* A200099 *) %t A200099 r = x /. FindRoot[f[x] == g[x], {x, 1.35, 1.36}, WorkingPrecision -> 110] %t A200099 RealDigits[r] (* A200100 *) %o A200099 (PARI) a=1; b=-4; c=1; solve(x=-2, 0, a*x^2 + b*cos(x) - c*sin(x)) \\ _G. C. Greubel_, Jun 24 2018 %Y A200099 Cf. A199949. %K A200099 nonn,cons %O A200099 1,3 %A A200099 _Clark Kimberling_, Nov 13 2011