This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A200101 #11 Feb 12 2025 09:54:23 %S A200101 9,1,7,7,0,1,3,1,5,8,3,1,6,0,0,4,7,5,1,7,0,5,2,4,3,9,0,9,5,3,9,2,1,4, %T A200101 8,7,7,1,8,1,9,6,1,1,6,8,5,9,0,0,5,7,1,1,5,1,0,0,4,8,9,0,0,2,2,4,8,9, %U A200101 4,4,8,7,9,0,0,7,1,1,5,4,2,2,3,0,2,3,3,9,9,7,4,4,0,5,8,6,8,6,8 %N A200101 Decimal expansion of least x satisfying x^2 - 4*cos(x) = 2*sin(x), negated. %C A200101 See A199949 for a guide to related sequences. The Mathematica program includes a graph. %H A200101 G. C. Greubel, <a href="/A200101/b200101.txt">Table of n, a(n) for n = 0..10000</a> %H A200101 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %e A200101 least x: -0.91770131583160047517052439095392148771... %e A200101 greatest x: 1.50407436560390845625770968131259727... %t A200101 a = 1; b = -4; c = 2; %t A200101 f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x] %t A200101 Plot[{f[x], g[x]}, {x, -3, 3}, {AxesOrigin -> {0, 0}}] %t A200101 r = x /. FindRoot[f[x] == g[x], {x, -.92, -.91}, WorkingPrecision -> 110] %t A200101 RealDigits[r] (* A200101 *) %t A200101 r = x /. FindRoot[f[x] == g[x], {x, 1.5, 1.6}, WorkingPrecision -> 110] %t A200101 RealDigits[r] (* A200102 *) %o A200101 (PARI) a=1; b=-4; c=2; solve(x=-1, 0, a*x^2 + b*cos(x) - c*sin(x)) \\ _G. C. Greubel_, Jun 25 2018 %Y A200101 Cf. A199949. %K A200101 nonn,cons %O A200101 0,1 %A A200101 _Clark Kimberling_, Nov 13 2011