This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A200102 #11 Feb 12 2025 09:54:28 %S A200102 1,5,0,4,0,7,4,3,6,5,6,0,3,9,0,8,4,5,6,2,5,7,7,0,9,6,8,1,3,1,2,5,9,7, %T A200102 2,7,8,5,5,0,0,6,5,6,0,9,3,9,5,9,0,8,3,2,2,3,4,0,3,8,1,1,2,3,9,7,6,0, %U A200102 1,6,5,6,2,7,5,7,6,0,1,4,0,7,0,4,0,8,6,7,1,7,2,8,3,5,5,4,8,7,5 %N A200102 Decimal expansion of greatest x satisfying x^2 - 4*cos(x) = 2*sin(x). %C A200102 See A199949 for a guide to related sequences. The Mathematica program includes a graph. %H A200102 G. C. Greubel, <a href="/A200102/b200102.txt">Table of n, a(n) for n = 1..10000</a> %H A200102 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %e A200102 least x: -0.91770131583160047517052439095392148771... %e A200102 greatest x: 1.50407436560390845625770968131259727... %t A200102 a = 1; b = -4; c = 2; %t A200102 f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x] %t A200102 Plot[{f[x], g[x]}, {x, -3, 3}, {AxesOrigin -> {0, 0}}] %t A200102 r = x /. FindRoot[f[x] == g[x], {x, -.92, -.91}, WorkingPrecision -> 110] %t A200102 RealDigits[r] (* A200101 *) %t A200102 r = x /. FindRoot[f[x] == g[x], {x, 1.5, 1.6}, WorkingPrecision -> 110] %t A200102 RealDigits[r] (* A200102 *) %o A200102 (PARI) a=1; b=-4; c=2; solve(x=1, 2, a*x^2 + b*cos(x) - c*sin(x)) \\ _G. C. Greubel_, Jun 25 2018 %Y A200102 Cf. A199949. %K A200102 nonn,cons %O A200102 1,2 %A A200102 _Clark Kimberling_, Nov 13 2011