This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A200103 #11 Feb 12 2025 09:54:25 %S A200103 7,9,9,2,0,0,8,1,6,8,9,5,0,9,7,0,0,5,9,4,4,4,6,0,0,6,9,2,3,2,1,1,0,1, %T A200103 0,4,1,2,5,1,2,1,2,6,7,1,1,1,6,1,4,3,6,3,7,8,0,2,0,8,4,8,6,9,4,0,5,8, %U A200103 0,2,7,0,8,4,8,0,7,3,4,1,6,4,1,1,8,9,1,8,7,8,2,4,3,0,4,5,4,2,1 %N A200103 Decimal expansion of least x satisfying x^2 - 4*cos(x) = 3*sin(x), negated. %C A200103 See A199949 for a guide to related sequences. The Mathematica program includes a graph. %H A200103 G. C. Greubel, <a href="/A200103/b200103.txt">Table of n, a(n) for n = 0..10000</a> %H A200103 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %e A200103 least x: -0.79920081689509700594446006923211010... %e A200103 greatest x: 1.643556567520171656906524761634888... %t A200103 a = 1; b = -4; c = 3; %t A200103 f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x] %t A200103 Plot[{f[x], g[x]}, {x, -3, 3}, {AxesOrigin -> {0, 0}}] %t A200103 r = x /. FindRoot[f[x] == g[x], {x, -.8, -.7}, WorkingPrecision -> 110] %t A200103 RealDigits[r] (* A200103 *) %t A200103 r = x /. FindRoot[f[x] == g[x], {x, 1.64, 1.65}, WorkingPrecision -> 110] %t A200103 RealDigits[r] (* A200104 *) %o A200103 (PARI) a=1; b=-4; c=3; solve(x=-1, 0, a*x^2 + b*cos(x) - c*sin(x)) \\ _G. C. Greubel_, Jun 25 2018 %Y A200103 Cf. A199949. %K A200103 nonn,cons %O A200103 0,1 %A A200103 _Clark Kimberling_, Nov 13 2011