This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A200108 #11 Feb 12 2025 09:55:32 %S A200108 8,4,0,2,6,3,5,1,7,7,1,5,7,6,7,8,9,9,3,4,7,9,7,3,4,9,9,6,4,8,3,5,5,7, %T A200108 9,7,3,6,5,0,2,5,3,9,0,5,3,5,1,5,2,6,6,1,1,7,3,5,4,3,6,3,9,2,5,1,7,4, %U A200108 5,5,5,6,5,3,6,2,5,0,2,1,5,6,7,8,0,3,5,1,8,3,7,2,4,6,3,0,2,7,7 %N A200108 Decimal expansion of greatest x satisfying 2*x^2 - cos(x) = sin(x). %C A200108 See A199949 for a guide to related sequences. The Mathematica program includes a graph. %H A200108 G. C. Greubel, <a href="/A200108/b200108.txt">Table of n, a(n) for n = 0..10000</a> %H A200108 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %e A200108 least x: -0.4690323711198093057335493058025105005500... %e A200108 greatest x: 0.840263517715767899347973499648355797365... %t A200108 a = 2; b = -1; c = 1; %t A200108 f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x] %t A200108 Plot[{f[x], g[x]}, {x, -3, 3}, {AxesOrigin -> {0, 0}}] %t A200108 r = x /. %t A200108 FindRoot[f[x] == g[x], {x, -.47, -.46}, WorkingPrecision -> 110] %t A200108 RealDigits[r] (* A200107 *) %t A200108 r = x /. FindRoot[f[x] == g[x], {x, .84, .85}, WorkingPrecision -> 110] %t A200108 RealDigits[r] (* A200108 *) %o A200108 (PARI) a=2; b=-1; c=1; solve(x=0, 1, a*x^2 + b*cos(x) - c*sin(x)) \\ _G. C. Greubel_, Jun 25 2018 %Y A200108 Cf. A199949. %K A200108 nonn,cons %O A200108 0,1 %A A200108 _Clark Kimberling_, Nov 13 2011