This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A200110 #11 Feb 12 2025 09:55:34 %S A200110 1,0,5,6,6,9,8,3,7,6,9,4,2,8,7,8,1,2,2,1,9,2,4,0,8,3,0,3,1,1,7,5,2,5, %T A200110 0,9,3,5,5,7,1,3,6,8,6,5,0,9,1,9,3,5,0,7,4,4,3,8,6,6,4,9,4,2,8,0,6,9, %U A200110 8,4,2,7,3,3,0,3,3,7,1,5,8,8,7,0,0,9,2,6,3,1,0,0,5,0,4,1,4,2,9 %N A200110 Decimal expansion of greatest x satisfying 2*x^2 - cos(x) = 2*sin(x). %C A200110 See A199949 for a guide to related sequences. The Mathematica program includes a graph. %H A200110 G. C. Greubel, <a href="/A200110/b200110.txt">Table of n, a(n) for n = 1..10000</a> %H A200110 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %e A200110 least x: -0.35236500577732645310286619535999... %e A200110 greatest x: 1.0566983769428781221924083031175250... %t A200110 a = 2; b = -1; c = 2; %t A200110 f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x] %t A200110 Plot[{f[x], g[x]}, {x, -3, 3}, {AxesOrigin -> {0, 0}}] %t A200110 r = x /. FindRoot[f[x] == g[x], {x, -.36, -.35}, WorkingPrecision -> 110] %t A200110 RealDigits[r] (* A200109 *) %t A200110 r = x /. FindRoot[f[x] == g[x], {x, 1.05, 1.06}, WorkingPrecision -> 110] %t A200110 RealDigits[r] (* A200110 *) %o A200110 (PARI) a=2; b=-1; c=2; solve(x=1, 2, a*x^2 + b*cos(x) - c*sin(x)) \\ _G. C. Greubel_, Jun 25 2018 %Y A200110 Cf. A199949. %K A200110 nonn,cons %O A200110 1,3 %A A200110 _Clark Kimberling_, Nov 13 2011