This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A200111 #11 Feb 12 2025 11:22:00 %S A200111 2,7,4,1,8,5,9,2,8,0,5,9,8,3,1,5,7,9,0,1,2,9,3,8,5,7,6,1,6,5,9,2,6,1, %T A200111 0,6,7,1,9,3,4,6,4,4,2,6,5,9,6,6,3,7,1,8,4,8,3,7,3,1,3,2,8,7,6,3,4,5, %U A200111 8,4,4,1,6,6,5,1,5,9,0,3,6,8,1,0,1,8,6,6,3,2,2,3,7,2,6,9,8,8,1 %N A200111 Decimal expansion of least x satisfying 2*x^2-cos(x)=3*sin(x). %C A200111 See A199949 for a guide to related sequences. The Mathematica program includes a graph. %H A200111 G. C. Greubel, <a href="/A200111/b200111.txt">Table of n, a(n) for n = 0..10000</a> %H A200111 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %e A200111 least x: -0.2741859280598315790129385761659261067... %e A200111 greatest x: 1.25741142949475925602237309814803895... %t A200111 a = 2; b = -1; c = 3; %t A200111 f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x] %t A200111 Plot[{f[x], g[x]}, {x, -3, 3}, {AxesOrigin -> {0, 0}}] %t A200111 r = x /. FindRoot[f[x] == g[x], {x, -.28, -.27}, WorkingPrecision -> 110] %t A200111 RealDigits[r] (* A200111 *) %t A200111 r = x /. FindRoot[f[x] == g[x], {x, 1.25, 1.26}, WorkingPrecision -> 110] %t A200111 RealDigits[r] (* A200112 *) %o A200111 (PARI) a=2; b=-1; c=3; solve(x=-.28, -.27, a*x^2 + b*cos(x) - c*sin(x)) \\ _G. C. Greubel_, Jun 22 2018 %Y A200111 Cf. A199949. %K A200111 nonn,cons %O A200111 0,1 %A A200111 _Clark Kimberling_, Nov 13 2011