This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A200112 #13 Feb 12 2025 11:22:05 %S A200112 1,2,5,7,4,1,1,4,2,9,4,9,4,7,5,9,2,5,6,0,2,2,3,7,3,0,9,8,1,4,8,0,3,8, %T A200112 9,5,2,5,2,1,6,0,2,4,9,3,6,7,8,6,4,7,2,8,0,1,2,9,2,2,8,1,6,3,4,8,6,2, %U A200112 7,9,2,8,1,1,1,6,5,0,3,7,3,9,5,0,0,0,0,0,8,8,4,9,9,4,8,5,4,7,4 %N A200112 Decimal expansion of greatest x satisfying 2*x^2-cos(x) = 3*sin(x). %C A200112 See A199949 for a guide to related sequences. The Mathematica program includes a graph. %H A200112 G. C. Greubel, <a href="/A200112/b200112.txt">Table of n, a(n) for n = 1..10000</a> %H A200112 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %e A200112 least x: -0.27418592805983157901293857616592610671... %e A200112 greatest x: 1.25741142949475925602237309814803895... %t A200112 a = 2; b = -1; c = 3; %t A200112 f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x] %t A200112 Plot[{f[x], g[x]}, {x, -3, 3}, {AxesOrigin -> {0, 0}}] %t A200112 r = x /. FindRoot[f[x] == g[x], {x, -.28, -.27}, WorkingPrecision -> 110] %t A200112 RealDigits[r] (* A200111 *) %t A200112 r = x /. FindRoot[f[x] == g[x], {x, 1.25, 1.26}, WorkingPrecision -> 110] %t A200112 RealDigits[r] (* A200112 *) %o A200112 (PARI) a=2; b=-1; c=3; solve(x=1.25, 1.26, a*x^2 + b*cos(x) - c*sin(x)) \\ _G. C. Greubel_, Jun 22 2018 %Y A200112 Cf. A199949. %K A200112 nonn,cons %O A200112 1,2 %A A200112 _Clark Kimberling_, Nov 13 2011