This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A200114 #12 Feb 12 2025 11:22:02 %S A200114 2,2,1,2,3,4,7,1,6,8,5,6,5,5,0,8,4,5,9,2,8,7,5,1,6,1,4,5,6,5,1,7,9,1, %T A200114 5,6,6,1,6,0,0,1,8,4,8,1,0,3,7,5,1,2,2,6,1,0,9,7,5,6,4,8,7,2,2,1,3,6, %U A200114 8,0,3,2,0,7,6,1,3,9,5,9,6,8,0,3,8,5,5,3,6,8,5,1,5,0,2,9,7,5,8 %N A200114 Decimal expansion of least x satisfying 2*x^2 - cos(x) = 4*sin(x), negated. %C A200114 See A199949 for a guide to related sequences. The Mathematica program includes a graph. %H A200114 G. C. Greubel, <a href="/A200114/b200114.txt">Table of n, a(n) for n = 0..10000</a> %H A200114 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %e A200114 least x: -0.22123471685655084592875161456517915661... %e A200114 greatest x: 1.431778732687231131820591799700558843... %t A200114 a = 2; b = -1; c = 4; %t A200114 f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x] %t A200114 Plot[{f[x], g[x]}, {x, -3, 3}, {AxesOrigin -> {0, 0}}] %t A200114 r = x /. FindRoot[f[x] == g[x], {x, -.23, -.22}, WorkingPrecision -> 110] %t A200114 RealDigits[r] (* A200114 *) %t A200114 r = x /. FindRoot[f[x] == g[x], {x, 1.43, 1.44}, WorkingPrecision -> 110] %t A200114 RealDigits[r] (* A200115 *) %o A200114 (PARI) a=2; b=-1; c=4; solve(x=-1, 0, a*x^2 + b*cos(x) - c*sin(x)) \\ _G. C. Greubel_, Jun 29 2018 %Y A200114 Cf. A199949. %K A200114 nonn,cons %O A200114 0,1 %A A200114 _Clark Kimberling_, Nov 13 2011