This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A200119 #12 Feb 12 2025 11:31:33 %S A200119 1,3,0,7,1,9,0,9,9,2,0,7,3,8,1,3,0,6,6,4,0,4,6,3,4,1,8,6,6,5,4,5,6,0, %T A200119 4,5,6,2,8,2,6,0,4,5,6,8,3,5,4,3,0,5,8,9,0,4,7,6,7,6,9,5,2,8,0,0,3,8, %U A200119 9,7,8,8,2,5,4,6,1,4,1,9,7,9,5,3,1,9,0,8,2,0,8,7,8,9,7,6,2,3,2 %N A200119 Decimal expansion of greatest x satisfying 2*x^2 - 2*cos(x) = 3*sin(x). %C A200119 See A199949 for a guide to related sequences. The Mathematica program includes a graph. %H A200119 G. C. Greubel, <a href="/A200119/b200119.txt">Table of n, a(n) for n = 1..10000</a> %H A200119 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %e A200119 least x: -0.46682360757098679958413415443158404... %e A200119 greatest x: 1.3071909920738130664046341866545604... %t A200119 a = 2; b = -2; c = 3; %t A200119 f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x] %t A200119 Plot[{f[x], g[x]}, {x, -3, 3}, {AxesOrigin -> {0, 0}}] %t A200119 r = x /. FindRoot[f[x] == g[x], {x, -.47, -.48}, WorkingPrecision -> 110] %t A200119 RealDigits[r] (* A200118 *) %t A200119 r = x /. FindRoot[f[x] == g[x], {x, 1.3, 1.31}, WorkingPrecision -> 110] %t A200119 RealDigits[r] (* A200119 *) %o A200119 (PARI) a=2; b=-2; c=3; solve(x=1, 2, a*x^2 + b*cos(x) - c*sin(x)) \\ _G. C. Greubel_, Jun 29 2018 %Y A200119 Cf. A199949. %K A200119 nonn,cons %O A200119 1,2 %A A200119 _Clark Kimberling_, Nov 14 2011