This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A200120 #11 Feb 12 2025 12:59:42 %S A200120 8,1,5,2,3,3,2,2,3,4,1,0,5,1,4,1,3,1,2,0,5,9,2,1,2,0,0,0,2,2,2,2,0,9, %T A200120 7,0,3,0,0,7,3,1,1,5,4,3,9,1,2,1,5,4,0,2,0,2,5,7,2,7,1,6,8,7,7,0,1,3, %U A200120 5,7,9,2,2,8,9,8,8,1,8,1,7,6,1,0,0,3,9,4,0,2,9,3,5,5,6,3,0,9,3 %N A200120 Decimal expansion of least x satisfying 2*x^2 - 3*cos(x) = sin(x), negated. %C A200120 See A199949 for a guide to related sequences. The Mathematica program includes a graph. %H A200120 G. C. Greubel, <a href="/A200120/b200120.txt">Table of n, a(n) for n = 0..10000</a> %H A200120 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %e A200120 least x: -0.815233223410514131205921200022220970300... %e A200120 greatest x: 1.0743092065060468901083577789286306342... %t A200120 a = 2; b = -3; c = 1; %t A200120 f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x] %t A200120 Plot[{f[x], g[x]}, {x, -3, 3}, {AxesOrigin -> {0, 0}}] %t A200120 r = x /. FindRoot[f[x] == g[x], {x, -.82, -.81}, WorkingPrecision -> 110] %t A200120 RealDigits[r] (* A200120 *) %t A200120 r = x /. FindRoot[f[x] == g[x], {x, 1.07, 1.08}, WorkingPrecision -> 110] %t A200120 RealDigits[r] (* A200121 *) %o A200120 (PARI) a=2; b=-3; c=1; solve(x=-1, 0, a*x^2 + b*cos(x) - c*sin(x)) \\ _G. C. Greubel_, Jun 29 2018 %Y A200120 Cf. A199949. %K A200120 nonn,cons %O A200120 0,1 %A A200120 _Clark Kimberling_, Nov 14 2011