cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A200123 Decimal expansion of greatest x satisfying 2*x^2 - 3*cos(x) = 2*sin(x).

This page as a plain text file.
%I A200123 #11 Feb 12 2025 13:00:24
%S A200123 1,2,1,0,3,0,1,1,0,2,1,5,6,0,5,7,8,5,9,1,9,2,8,4,4,2,4,6,7,5,9,4,3,4,
%T A200123 7,8,0,3,8,1,4,9,4,7,5,5,4,4,3,5,2,6,5,4,1,2,5,5,9,4,7,5,6,4,0,2,5,1,
%U A200123 2,6,1,3,0,6,7,4,9,2,0,3,2,8,7,4,6,6,2,1,4,2,7,4,1,2,6,4,8,3,5
%N A200123 Decimal expansion of greatest x satisfying 2*x^2 - 3*cos(x) = 2*sin(x).
%C A200123 See A199949 for a guide to related sequences. The Mathematica program includes a graph.
%H A200123 G. C. Greubel, <a href="/A200123/b200123.txt">Table of n, a(n) for n = 1..10000</a>
%H A200123 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>.
%e A200123 least x: -0.70415945703712255268105833349948348210...
%e A200123 greatest x: 1.210301102156057859192844246759434780...
%t A200123 a = 2; b = -3; c = 2;
%t A200123 f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]
%t A200123 Plot[{f[x], g[x]}, {x, -3, 3}, {AxesOrigin -> {0, 0}}]
%t A200123 r = x /. FindRoot[f[x] == g[x], {x, -.71, -.70}, WorkingPrecision -> 110]
%t A200123 RealDigits[r]  (* A200122 *)
%t A200123 r = x /. FindRoot[f[x] == g[x], {x, 1.2, 1.3}, WorkingPrecision -> 110]
%t A200123 RealDigits[r]  (* A200123 *)
%o A200123 (PARI) a=2; b=-3; c=2; solve(x=1, 2, a*x^2 + b*cos(x) - c*sin(x)) \\ _G. C. Greubel_, Jun 29 2018
%Y A200123 Cf. A199949.
%K A200123 nonn,cons
%O A200123 1,2
%A A200123 _Clark Kimberling_, Nov 14 2011