This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A200126 #12 Feb 12 2025 13:01:11 %S A200126 5,3,0,6,3,3,0,4,7,4,9,6,8,4,8,8,8,0,1,6,6,8,0,4,1,7,5,6,7,1,0,6,4,1, %T A200126 0,0,2,8,1,6,1,9,5,6,3,6,8,5,3,5,6,4,4,6,1,4,8,4,3,4,2,1,2,0,9,6,5,7, %U A200126 3,0,5,4,4,1,6,7,8,8,8,3,6,3,9,5,4,1,6,4,1,4,1,5,8,8,6,7,2,2,6 %N A200126 Decimal expansion of least x satisfying 2*x^2 - 3*cos(x) = 4*sin(x), negated. %C A200126 See A199949 for a guide to related sequences. The Mathematica program includes a graph. %H A200126 G. C. Greubel, <a href="/A200126/b200126.txt">Table of n, a(n) for n = 0..10000</a> %H A200126 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %e A200126 least x: -0.530633047496848880166804175671064100... %e A200126 greatest x: 1.4652353861426318569459268305726949... %t A200126 a = 2; b = -3; c = 4; %t A200126 f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x] %t A200126 Plot[{f[x], g[x]}, {x, -3, 3}, {AxesOrigin -> {0, 0}}] %t A200126 r = x /. FindRoot[f[x] == g[x], {x, -.54, -.53}, WorkingPrecision -> 110] %t A200126 RealDigits[r] (* A200126 *) %t A200126 r = x /. FindRoot[f[x] == g[x], {x, 1.46, 1.47}, WorkingPrecision -> 110] %t A200126 RealDigits[r] (* A200127 *) %o A200126 (PARI) a=2; b=-3; c=4; solve(x=-1, 0, a*x^2 + b*cos(x) - c*sin(x)) \\ _G. C. Greubel_, Jul 01 2018 %Y A200126 Cf. A199949. %K A200126 nonn,cons %O A200126 0,1 %A A200126 _Clark Kimberling_, Nov 14 2011