cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A200139 Triangle T(n,k), read by rows, given by (1,1,0,0,0,0,0,0,0,...) DELTA (1,0,0,0,0,0,0,0,0,...) where DELTA is the operator defined in A084938.

This page as a plain text file.
%I A200139 #37 Mar 05 2018 04:56:05
%S A200139 1,1,1,2,3,1,4,8,5,1,8,20,18,7,1,16,48,56,32,9,1,32,112,160,120,50,11,
%T A200139 1,64,256,432,400,220,72,13,1,128,576,1120,1232,840,364,98,15,1,256,
%U A200139 1280,2816,3584,2912,1568,560,128,17,1,512,2816,6912,9984,9408,6048,2688,816,162,19,1
%N A200139 Triangle T(n,k), read by rows, given by (1,1,0,0,0,0,0,0,0,...) DELTA (1,0,0,0,0,0,0,0,0,...) where DELTA is the operator defined in A084938.
%C A200139 Riordan array ((1-x)/(1-2x),x/(1-2x)).
%C A200139 Product A097805*A007318 as infinite lower triangular arrays.
%C A200139 Product A193723*A130595 as infinite lower triangular arrays.
%C A200139 T(n,k) is the number of ways to place n unlabeled objects into any number of labeled bins (with at least one object in each bin) and then designate k of the bins. - _Geoffrey Critzer_, Nov 18 2012
%C A200139 Apparently, rows of this array are unsigned diagonals of A028297. - _Tom Copeland_, Oct 11 2014
%C A200139 Unsigned A118800, so my conjecture above is true. - _Tom Copeland_, Nov 14 2016
%F A200139 T(n,k) = 2*T(n-1,k)+T(n-1,k-1) with T(0,0)=T(1,0)=T(1,1)=1 and T(n,k)=0 for k<0 or for n<k.
%F A200139 T(n,k) = A011782(n-k)*A135226(n,k) = 2^(n-k)*(binomial(n,k)+binomial(n-1,k-1))/2.
%F A200139 Sum_{k, 0<=k<=n} T(n,k)*x^k = A000007(n), A011782(n), A025192(n), A002001(n), A005054(n), A052934(n), A055272(n), A055274(n), A055275(n), A052268(n), A055276(n), A196731(n) for n=-1,0,1,2,3,4,5,6,7,8,9,10 respectively.
%F A200139 G.f.: (1-x)/(1-(2+y)*x).
%F A200139 T(n,k) = Sum_j>=0 T(n-1-j,k-1)*2^j.
%F A200139 T = A007318*A059260, so the row polynomials of this entry are given umbrally by p_n(x) = (1 + q.(x))^n, where q_n(x) are the row polynomials of A059260 and (q.(x))^k = q_k(x). Consequently, the e.g.f. is exp[tp.(x)] = exp[t(1+q.(x))] = e^t exp(tq.(x)) = [1 + (x+1)e^((x+2)t)]/(x+2), and p_n(x) = (x+1)(x+2)^(n-1) for n > 0. - _Tom Copeland_, Nov 15 2016
%F A200139 T^(-1) = A130595*(padded A130595), differently signed A118801. Cf. A097805. - _Tom Copeland_, Nov 17 2016
%F A200139 The n-th row polynomial in descending powers of x is the n-th Taylor polynomial of the rational function (1 + x)/(1 + 2*x) * (1 + 2*x)^n about 0. For example, for n = 4, (1 + x)/(1 + 2*x) * (1 + 2*x)^4 = (8*x^4 + 20*x*3 + 18*x^2 + 7*x + 1) + O(x^5). - _Peter Bala_, Feb 24 2018
%e A200139 Triangle begins:
%e A200139    1
%e A200139    1,   1
%e A200139    2,   3,   1
%e A200139    4,   8,   5,   1
%e A200139    8,  20,  18,   7,   1
%e A200139   16,  48,  56,  32,   9,   1
%e A200139   32, 112, 160, 120,  50,  11,   1
%t A200139 nn=15;f[list_]:=Select[list,#>0&];Map[f,CoefficientList[Series[(1-x)/(1-2x-y x) ,{x,0,nn}],{x,y}]]//Grid  (* _Geoffrey Critzer_, Nov 18 2012 *)
%Y A200139 Cf. A118800 (signed version), A081277, A039991, A001333 (antidiagonal sums), A025192 (row sums); diagonals: A000012, A005408, A001105, A002492, A072819l; columns: A011782, A001792, A001793, A001794, A006974, A006975, A006976.
%Y A200139 Cf. A007318, A028297, A059260, A097805, A118801, A130595.
%K A200139 nonn,tabl,easy
%O A200139 0,4
%A A200139 _Philippe Deléham_, Nov 13 2011