This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A200154 #28 Dec 13 2019 05:59:02 %S A200154 1,1,2,1,3,2,1,4,5,4,1,5,8,9,2,1,6,13,22,15,8,1,7,18,41,40,39,2,1,8, %T A200154 25,66,103,112,45,16,1,9,32,107,202,275,182,129,6,1,10,41,158,381,730, %U A200154 685,688,149,32,1,11,50,219,636,1589,2036,2525,844,243,2,1,12,61,304,1033,3000,5153,7488,5221,2090,369,64,1 %N A200154 T(n,k) = number of 0..k arrays x(0..n-1) of n elements with zero (n-1)-st difference. %C A200154 Table starts %C A200154 1 1 1 1 1 1 1 1 1 1 1 %C A200154 2 3 4 5 6 7 8 9 10 11 12 %C A200154 2 5 8 13 18 25 32 41 50 61 72 %C A200154 4 9 22 41 66 107 158 219 304 403 516 %C A200154 2 15 40 103 202 381 636 1033 1550 2287 3212 %C A200154 8 39 112 275 730 1589 3000 5181 8350 13871 21588 %C A200154 2 45 182 685 2036 5153 11370 23035 43284 76523 129052 %C A200154 16 129 688 2525 7488 18809 52166 121921 253768 484977 867086 %C A200154 6 149 844 5221 19262 68813 194818 514113 1171190 2531421 5019770 %C A200154 32 243 2090 13897 62772 256859 841122 2347671 6169890 14503751 31169760 %C A200154 T(n,k) is the number of integer lattice points in k*C(n) where C(n) is a certain polytope with vertices having rational entries (the intersection of [0,1]^n with a hyperplane). Thus row n is an Ehrhart quasi-polynomial of degree n-1. - _Robert Israel_, Dec 12 2019 %H A200154 R. H. Hardin, <a href="/A200154/b200154.txt">Table of n, a(n) for n = 1..321</a> %e A200154 Some solutions for n=7, k=6: %e A200154 5 6 5 3 6 0 0 5 4 1 2 2 0 2 1 2 %e A200154 3 1 5 1 6 5 4 0 2 5 2 0 2 0 4 0 %e A200154 3 3 6 5 6 1 6 2 0 1 1 4 3 4 6 2 %e A200154 3 2 3 6 5 1 3 6 0 2 1 6 3 3 6 3 %e A200154 2 0 2 5 5 3 2 6 1 6 2 5 3 1 5 2 %e A200154 1 1 6 5 6 2 6 1 2 6 3 3 4 3 4 1 %e A200154 4 1 1 3 1 2 0 1 5 0 3 1 6 1 2 4 %o A200154 (PARI) pad(d, n) = while(#d != n, d = concat([0], d)); d; %o A200154 mydigits(i,n) = if (n<2, vector(i), digits(i,n)); %o A200154 bedt(n) = {for(i=2, #n=n, n=vecextract(n, "^1")-vecextract(n, "^-1")); n[1];} %o A200154 T(n, k) = {k++; my(nbok = 0); for (i=0, k^n-1, d = pad(mydigits(i,k), n); if (bedt(d) == 0, nbok++);); nbok;} \\ _Michel Marcus_, Apr 08 2017 %Y A200154 Row 3 is A000982(n+1). %Y A200154 Cf. A187202 (for 3rd PARI function). %K A200154 nonn,tabl %O A200154 1,3 %A A200154 _R. H. Hardin_, Nov 13 2011