cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A200166 Number of -n..n arrays x(0..2) of 3 elements with nonzero sum and with zero through 2 differences all nonzero.

Original entry on oeis.org

2, 34, 128, 348, 726, 1326, 2180, 3352, 4874, 6810, 9192, 12084, 15518, 19558, 24236, 29616, 35730, 42642, 50384, 59020, 68582, 79134, 90708, 103368, 117146, 132106, 148280, 165732, 184494, 204630, 226172, 249184, 273698, 299778, 327456, 356796
Offset: 1

Views

Author

R. H. Hardin, Nov 13 2011

Keywords

Comments

Row 3 of A200165.

Examples

			Some solutions for n=5:
.-2...-1...-1...-2...-5...-1...-2....2...-2...-4...-1...-3....1...-4....2...-2
..4....4....4...-4...-1....5....2....4....5....5....3...-1....5...-3....5...-5
.-4...-5....2....4...-2....4...-3....2....2....2...-4...-4...-2...-1....4....5
		

Crossrefs

Cf. A200165.

Formula

Empirical: a(n) = 3*a(n-1) -2*a(n-2) -2*a(n-3) +3*a(n-4) -a(n-5).
Conjectures from Colin Barker, May 17 2018: (Start)
G.f.: 2*x*(1 + 14*x + 15*x^2 + 18*x^3) / ((1 - x)^4*(1 + x)).
a(n) = 11*n - 13*n^2 + 8*n^3 for n even.
a(n) = -4 + 11*n - 13*n^2 + 8*n^3 for n odd.
(End)

A200167 Number of -n..n arrays x(0..3) of 4 elements with nonzero sum and with zero through 3 differences all nonzero.

Original entry on oeis.org

0, 76, 576, 2256, 6160, 13888, 27160, 48380, 80096, 125412, 187552, 270688, 378512, 515980, 687836, 899548, 1156496, 1465440, 1832040, 2263800, 2767676, 3351476, 4022752, 4790848, 5663388, 6650440, 7761148, 9005676, 10393744, 11937276
Offset: 1

Views

Author

R. H. Hardin, Nov 13 2011

Keywords

Comments

Row 4 of A200165.

Examples

			Some solutions for n=5
.-1...-5...-1...-3....3...-4...-1....3...-4....3....5...-2...-5...-4....5....1
..4....4....5....4...-2....4....3...-4....5....1...-1...-5...-2...-3...-3....5
..1....5...-2....2....2...-5....4...-1....1....3....1...-1....2....4...-2....2
..3....4....4...-2....1....1...-5....5....4...-4....5....1...-3....5...-5...-2
		

Crossrefs

Cf. A200165.

Formula

Empirical: a(n) = 2*a(n-2) +2*a(n-3) -a(n-4) -3*a(n-5) -a(n-6) +a(n-9) +3*a(n-10) +a(n-11) -2*a(n-12) -2*a(n-13) +a(n-15).

A200168 Number of -n..n arrays x(0..4) of 5 elements with nonzero sum and with zero through 4 differences all nonzero.

Original entry on oeis.org

2, 276, 2778, 15040, 52486, 145482, 336992, 695778, 1309052, 2298830, 3808116, 6034796, 9189086, 13554364, 19435742, 27212132, 37285690, 50170962, 66371288, 86532042, 111309444, 141482278, 177842124, 221369312, 272987306, 333851184
Offset: 1

Views

Author

R. H. Hardin Nov 13 2011

Keywords

Comments

Row 5 of A200165

Examples

			Some solutions for n=5
.-5....5...-3...-1...-5....3...-5...-3...-4....4....5....4...-1....1...-3....3
..5...-1...-5....4....1....4....5....4....1....1....2....5....3....4...-5....4
.-4....1....3...-5...-2...-4...-1...-3....4....3....5...-3....2....2....3...-2
..2...-5...-2....4....1....5....4...-5...-4....1...-1...-4....4...-1...-4...-3
..4...-3...-3...-5....3...-4....3...-3....5...-4....4....3....2....3...-1...-5
		

Formula

Empirical: a(n) = -a(n-1) -2*a(n-2) -a(n-3) -a(n-4) +a(n-5) +2*a(n-6) +3*a(n-7) +3*a(n-8) +3*a(n-9) +2*a(n-10) +2*a(n-11) +a(n-12) +a(n-13) -a(n-15) -a(n-16) -3*a(n-17) -2*a(n-18) -4*a(n-19) -3*a(n-20) -5*a(n-21) -4*a(n-22) -5*a(n-23) -3*a(n-24) -3*a(n-25) +3*a(n-28) +3*a(n-29) +5*a(n-30) +5*a(n-31) +6*a(n-32) +6*a(n-33) +5*a(n-34) +5*a(n-35) +3*a(n-36) +3*a(n-37) -3*a(n-40) -3*a(n-41) -5*a(n-42) -4*a(n-43) -5*a(n-44) -3*a(n-45) -4*a(n-46) -2*a(n-47) -3*a(n-48) -a(n-49) -a(n-50) +a(n-52) +a(n-53) +2*a(n-54) +2*a(n-55) +3*a(n-56) +3*a(n-57) +3*a(n-58) +2*a(n-59) +a(n-60) -a(n-61) -a(n-62) -2*a(n-63) -a(n-64) -a(n-65)

A200169 Number of -n..n arrays x(0..5) of 6 elements with nonzero sum and with zero through 5 differences all nonzero.

Original entry on oeis.org

0, 700, 12440, 96884, 438968, 1504820, 4141212, 9922424, 21253088, 41894660, 76920336, 133925952, 222142748, 354645912, 547265784, 820450936, 1198350296, 1712627752, 2397846536, 3298959016, 4465613072, 5958544292, 7844423744
Offset: 1

Views

Author

R. H. Hardin, Nov 13 2011

Keywords

Comments

Row 6 of A200165.

Examples

			Some solutions for n=5
..2...-5....1...-4....1...-5...-5...-4...-4....2...-5...-5....1...-4...-5...-5
.-5....2...-3...-3....2....1....1....3....1...-3...-3....2....2...-3...-4...-4
..5...-5....2....2...-5...-3...-3....1....4...-2....1...-2...-3...-5....2....4
.-1...-2....4...-3...-3...-1...-5....2....2....4....4...-4....2...-1...-1...-2
..5....5...-4....3...-5...-5...-2...-3...-2...-2....1....5...-1...-4....5....1
..4...-2...-5....4...-1...-1....5....3...-3....5...-3....2....1...-1...-5...-5
		

Crossrefs

Cf. A200165.

A200159 Number of -2..2 arrays x(0..n-1) of n elements with nonzero sum and with zero through n-1 differences all nonzero.

Original entry on oeis.org

4, 8, 34, 76, 276, 700, 2276, 5992, 18542, 50488, 151814, 420680, 1241580, 3481308, 10162686, 28707288, 83211126, 236138900, 681383716, 1939299184, 5579324890, 15908310224, 45678520824, 130391096068
Offset: 1

Views

Author

R. H. Hardin Nov 13 2011

Keywords

Comments

Column 2 of A200165

Examples

			Some solutions for n=5
..2...-2...-1...-2....2...-1....1...-2...-2....1....2....1...-1....2...-1...-2
.-1...-1...-2....1....1....1....2....2....1...-1...-2...-1....2....1....1....1
.-2....2...-1...-1....2....2...-2...-1....2....1....2....1...-1...-2...-2...-1
..1...-2....1...-2...-1...-1....2...-2...-1...-2...-1...-1....1....2...-1...-2
.-1....1....2...-1...-2....2...-2....2....2...-1....1....1....2....1...-2....2
		

A200160 Number of -3..3 arrays x(0..n-1) of n elements with nonzero sum and with zero through n-1 differences all nonzero.

Original entry on oeis.org

6, 24, 128, 576, 2778, 12440, 57992, 262444, 1202540, 5463896, 24922570, 113239064, 515471532, 2342330752, 10649798938
Offset: 1

Views

Author

R. H. Hardin Nov 13 2011

Keywords

Comments

Column 3 of A200165

Examples

			Some solutions for n=5
.-1...-1....2....2....2....1...-3....3....3...-3...-1....3....1...-1...-1....3
..2....1...-2...-1....3....3....2...-2...-2....3...-2...-2...-3...-3....2....1
.-3...-2...-1....2....1....2...-3...-1...-1....1....1....2....1....1...-1....3
..1...-1....1....3...-2...-3...-1....1....1...-3...-2....3...-2...-1...-2...-1
.-2...-2...-2...-1....1....1...-2...-2...-3...-1....3....2...-1....2....3....1
		

A200161 Number of -4..4 arrays x(0..n-1) of n elements with nonzero sum and with zero through n-1 differences all nonzero.

Original entry on oeis.org

8, 48, 348, 2256, 15040, 96884, 631638, 4072228, 26327538, 169703920, 1094685786, 7052320656
Offset: 1

Views

Author

R. H. Hardin Nov 13 2011

Keywords

Comments

Column 4 of A200165

Examples

			Some solutions for n=5
..2...-1....1....1....2....3....3...-2....3....3....1....3....3...-2....4...-2
..3...-2...-2....4...-2....2...-4....1...-1....4...-2....4...-3....3....2...-4
.-1....3...-4...-2...-1...-3...-1...-3....2...-1...-1...-3....4....1....4...-1
..2...-2....4...-1...-4....2....3....4....3....4...-4...-2...-3....4...-2...-3
.-2...-4...-4....3...-3....3....2...-3...-3....2...-1....3...-2....1...-3....2
		

A200162 Number of -5..5 arrays x(0..n-1) of n elements with nonzero sum and with zero through n-1 differences all nonzero.

Original entry on oeis.org

10, 80, 726, 6160, 52486, 438968, 3687480, 30776992, 257108784, 2144437176
Offset: 1

Views

Author

R. H. Hardin Nov 13 2011

Keywords

Comments

Column 5 of A200165

Examples

			Some solutions for n=5
.-2...-2....5...-5....2....4....3...-1....3...-2...-2...-5...-5....2...-5....1
..5...-5...-2....1...-2....2...-4...-4...-5....1...-3...-2....2....1....5...-3
..4....4....1....2...-5...-2....1...-1....1...-2....3....3...-3...-4...-2....3
..5....5...-4....1....3...-1...-3...-3...-3....1....5....1...-5....4...-5....2
.-3....1....3....5....4....4....4...-4...-1...-3....4...-2....3...-1...-1....4
		

A200163 Number of -6..6 arrays x(0..n-1) of n elements with nonzero sum and with zero through n-1 differences all nonzero.

Original entry on oeis.org

12, 120, 1326, 13888, 145482, 1504820, 15586972, 160772064, 1658521710
Offset: 1

Views

Author

R. H. Hardin Nov 13 2011

Keywords

Comments

Column 6 of A200165

Examples

			Some solutions for n=5
.-2....6...-1...-6...-2....2....4....4...-2....3....4....5....3....4....2....2
..5...-3....1...-2...-3...-4...-1...-4...-3...-3...-3....1....4...-6....1....5
.-4....2....4....4...-6...-6...-5....3...-5....1...-4....2...-6....5....4....1
.-2....3...-4...-5....4....6....4...-1...-3...-3...-2...-3...-1....2...-4....2
.-1....1...-1...-2...-5...-2...-6....3....6...-4...-6....6...-5...-6....4....4
		

A200164 Number of -7..7 arrays x(0..n-1) of n elements with nonzero sum and with zero through n-1 differences all nonzero.

Original entry on oeis.org

14, 168, 2180, 27160, 336992, 4141212, 50917674, 624074768
Offset: 1

Views

Author

R. H. Hardin Nov 13 2011

Keywords

Comments

Column 7 of A200165

Examples

			Some solutions for n=5
.-3....4....1...-7...-3...-3...-3....1....1....1...-7....5...-7...-7...-4...-7
..2...-6...-7....6...-6...-4...-7...-1...-4....7....3....4....7...-5....4...-3
.-3...-2...-5...-3...-5....2....1...-7....3....4...-2...-3...-7....2...-7...-1
..6...-7....1...-1...-3...-4....3....6....2...-1....2....4...-4...-7...-1....6
..2...-1...-1...-7....4....7....4...-1...-6...-3...-7...-6....6...-6...-3...-7
		
Showing 1-10 of 11 results. Next