A200166 Number of -n..n arrays x(0..2) of 3 elements with nonzero sum and with zero through 2 differences all nonzero.
2, 34, 128, 348, 726, 1326, 2180, 3352, 4874, 6810, 9192, 12084, 15518, 19558, 24236, 29616, 35730, 42642, 50384, 59020, 68582, 79134, 90708, 103368, 117146, 132106, 148280, 165732, 184494, 204630, 226172, 249184, 273698, 299778, 327456, 356796
Offset: 1
Keywords
Examples
Some solutions for n=5: .-2...-1...-1...-2...-5...-1...-2....2...-2...-4...-1...-3....1...-4....2...-2 ..4....4....4...-4...-1....5....2....4....5....5....3...-1....5...-3....5...-5 .-4...-5....2....4...-2....4...-3....2....2....2...-4...-4...-2...-1....4....5
Links
- R. H. Hardin, Table of n, a(n) for n = 1..200
Crossrefs
Cf. A200165.
Formula
Empirical: a(n) = 3*a(n-1) -2*a(n-2) -2*a(n-3) +3*a(n-4) -a(n-5).
Conjectures from Colin Barker, May 17 2018: (Start)
G.f.: 2*x*(1 + 14*x + 15*x^2 + 18*x^3) / ((1 - x)^4*(1 + x)).
a(n) = 11*n - 13*n^2 + 8*n^3 for n even.
a(n) = -4 + 11*n - 13*n^2 + 8*n^3 for n odd.
(End)
Comments