cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A200182 Number of -n..n arrays x(0..3) of 4 elements with zero sum and no two consecutive declines, no adjacent equal elements, and no element more than one greater than the previous (random base sawtooth pattern).

Original entry on oeis.org

3, 6, 11, 14, 19, 26, 31, 38, 47, 54, 63, 74, 83, 94, 107, 118, 131, 146, 159, 174, 191, 206, 223, 242, 259, 278, 299, 318, 339, 362, 383, 406, 431, 454, 479, 506, 531, 558, 587, 614, 643, 674, 703, 734, 767, 798, 831, 866, 899, 934, 971, 1006, 1043, 1082, 1119, 1158
Offset: 1

Views

Author

R. H. Hardin, Nov 13 2011

Keywords

Examples

			Some solutions for n=6:
..3....4....2....6....5....2....0....6....1....0....0....5....6....1....4....3
.-2....0....1...-2....6....3...-1...-1....2....1....1....0...-3....0...-1....1
.-1....1....2...-1...-6...-3....0....0....3....2...-1....1...-2....1....0....2
..0...-5...-5...-3...-5...-2....1...-5...-6...-3....0...-6...-1...-2...-3...-6
		

Crossrefs

Row 4 of A200181.
A014206 is a related sequence.

Formula

Empirical: a(n) = 2*a(n-1) -a(n-2) +a(n-3) -2*a(n-4) +a(n-5)
a(3*k-2) = ((3*k+1)^2)/3 - 7/3.
a(3*k-1) = ((3*k+2)^2)/3 - 7/3.
a(3*k) = ((3*k+3)^2)/3 - 1 = 3*(k+1)^2 - 1.
a(3*k+1) = ((3*k+4)^2)/3 - 7/3.
a(3*k+2) = ((3*k+5)^2)/3 - 7/3 ... and so on.
The terms a(3*k-1) and a(3*k+1) seem to be terms of A241199: numbers n such that 4 consecutive terms of binomial(n,k) satisfy a quadratic relation for 0 <= k <= n/2. - Avi Friedlich, Apr 28 2015
Empirical g.f.: -x*(2*x^4-5*x^3+2*x^2+3) / ((x-1)^3*(x^2+x+1)). - Colin Barker, Apr 28 2015

A200174 Number of -1..1 arrays x(0..n-1) of n elements with zero sum and no two consecutive declines, no adjacent equal elements, and no element more than one greater than the previous (random base sawtooth pattern).

Original entry on oeis.org

1, 1, 3, 3, 2, 6, 10, 7, 12, 28, 29, 29, 70, 105, 96, 169, 327, 363, 449, 914, 1302, 1426, 2455, 4220, 5030, 6925, 12579, 17582, 21687, 36154, 57823, 73301, 106333, 179101, 250064, 332708, 538040, 825039, 1097810, 1630708, 2613839, 3676575, 5125886
Offset: 1

Views

Author

R. H. Hardin Nov 13 2011

Keywords

Comments

Column 1 of A200181

Examples

			All solutions for n=6
.-1...-1....1....0....1....1
..0....0...-1....1....0...-1
..1....1....0...-1....1....0
.-1....0...-1....0...-1....1
..0....1....0....1....0...-1
..1...-1....1...-1...-1....0
		

A200175 Number of -2..2 arrays x(0..n-1) of n elements with zero sum and no two consecutive declines, no adjacent equal elements, and no element more than one greater than the previous (random base sawtooth pattern).

Original entry on oeis.org

1, 2, 3, 6, 12, 15, 29, 72, 133, 214, 394, 853, 1782, 3087, 5597, 11777, 24069, 45200, 83805, 167284, 342971, 664695, 1257505, 2476990, 4999659, 9864713, 19023479, 37228518, 74480796, 147868410, 288747975, 565957525, 1124938149, 2237002991
Offset: 1

Views

Author

R. H. Hardin Nov 13 2011

Keywords

Comments

Column 2 of A200181

Examples

			All solutions for n=6
..1....2....1...-1....2....1...-2....0...-1....2....0....0....0....2....0
..0...-2...-1....0....1...-1...-1...-1....0....0....1....1...-2....0....1
..1...-1....0....1....2....0....0....0....1....1....2...-1...-1....1....2
.-1....0....1...-1...-2...-1....1....1....0...-2...-2....0....0...-1...-1
..0....1...-1....0...-1....0....2....2....1...-1...-1....1....1....0....0
.-1....0....0....1...-2....1....0...-2...-1....0....0...-1....2...-2...-2
		

A200176 Number of -3..3 arrays x(0..n-1) of n elements with zero sum and no two consecutive declines, no adjacent equal elements, and no element more than one greater than the previous (random base sawtooth pattern).

Original entry on oeis.org

1, 3, 5, 11, 15, 29, 78, 160, 283, 574, 1428, 3087, 5800, 12563, 30105, 63994, 128826, 285423, 656667, 1407398, 2951141, 6564161, 14805297, 31974359, 68620812, 152674200, 340729396, 740843841, 1612122145, 3583332695, 7954071929
Offset: 1

Views

Author

R. H. Hardin Nov 13 2011

Keywords

Comments

Column 3 of A200181

Examples

			Some solutions for n=6
..1....3....1....3....1....1....2....3....2....1....2....3....0....0....1....0
..0...-2...-1....1...-1....2....3....2....1....2....0....1...-1...-2...-1....1
..1...-1....0....2....0....3...-2....3....2....3....1....2....0...-1....0....2
.-1....0....1...-3...-1...-2...-1...-3...-2...-3...-1...-2....1....0....1...-1
..0....1....2...-2....0...-1....0...-2...-1...-2....0...-1....2....1...-1....0
.-1...-1...-3...-1....1...-3...-2...-3...-2...-1...-2...-3...-2....2....0...-2
		

A200177 Number of -4..4 arrays x(0..n-1) of n elements with zero sum and no two consecutive declines, no adjacent equal elements, and no element more than one greater than the previous (random base sawtooth pattern).

Original entry on oeis.org

1, 4, 5, 14, 24, 48, 100, 280, 608, 1094, 2558, 6656, 14475, 29638, 69174, 170043, 384938, 830598, 1910747, 4608078, 10600467, 23514477, 54265809, 129118292, 298774740, 676277578, 1564120363, 3687870415, 8572421420, 19643806169
Offset: 1

Views

Author

R. H. Hardin Nov 13 2011

Keywords

Comments

Column 4 of A200181

Examples

			Some solutions for n=6
..2....0....1....1....3....0....4....3....3....0....4....2....0....2....1....2
..3....1....2....2...-1...-2....2....4....0....1....3....0....1...-2....2....1
..4....2....3...-1....0...-1....3...-2....1....2....4....1...-1...-1....3....2
.-3...-2...-2....0....1....0...-4...-1...-1...-1...-4....2....0....0...-3...-1
.-2...-1...-1....1...-2....1...-3....0....0....0...-3...-3....1....1...-2....0
.-4....0...-3...-3...-1....2...-2...-4...-3...-2...-4...-2...-1....0...-1...-4
		

A200178 Number of -5..5 arrays x(0..n-1) of n elements with zero sum and no two consecutive declines, no adjacent equal elements, and no element more than one greater than the previous (random base sawtooth pattern).

Original entry on oeis.org

1, 5, 7, 19, 31, 72, 186, 460, 891, 1934, 5241, 12431, 25680, 59390, 152436, 359303, 789835, 1853143, 4609254, 10926157, 24817557, 58735668, 144083442, 342433339, 794002110, 1892015431, 4599853709, 10962118986, 25773744159, 61646299147
Offset: 1

Views

Author

R. H. Hardin Nov 13 2011

Keywords

Comments

Column 5 of A200181

Examples

			Some solutions for n=6
..5....4....3....1....4....5....3....1....2....0....3....5....3....2...-1....1
..2....1....2....0...-1...-1...-2...-1....0....1....4...-2....0...-1....0...-1
..3....2....3....1....0....0...-1....0....1....0....5...-1....1....0....1....0
.-3...-2...-3...-1...-1...-1....0...-1....0....1...-4....0...-1....1....0....1
.-2...-1...-2....0....0....0....1....0....1....2...-3....1....0....2....1...-1
.-5...-4...-3...-1...-2...-3...-1....1...-4...-4...-5...-3...-3...-4...-1....0
		

A200179 Number of -6..6 arrays x(0..n-1) of n elements with zero sum and no two consecutive declines, no adjacent equal elements, and no element more than one greater than the previous (random base sawtooth pattern).

Original entry on oeis.org

1, 6, 7, 26, 48, 103, 246, 700, 1573, 3247, 8034, 21608, 50100, 109071, 268358, 690150, 1629202, 3709231, 9026969, 22707455, 54349757, 126747830, 308139152, 765740522, 1845805544, 4379391584, 10654557350, 26290537792, 63724232354, 152906665554
Offset: 1

Views

Author

R. H. Hardin Nov 13 2011

Keywords

Comments

Column 6 of A200181

Examples

			Some solutions for n=6
..5....0....4....3....3....6....2....3....2....1....4....4....3....2....0....4
..1....1....5....2....1...-2....0...-1....3....2....2....1....1....0....1...-1
..2....2....6....3....2...-1....1....0....4....3....3....2....2....1....2....0
.-2...-1...-6...-2...-3....0....0....1...-2...-2...-4...-1...-2....2....1....1
.-1....0...-5...-1...-2...-2....1....2...-1...-1...-3....0...-1...-3....2....2
.-5...-2...-4...-5...-1...-1...-4...-5...-6...-3...-2...-6...-3...-2...-6...-6
		

A200180 Number of -7..7 arrays x(0..n-1) of n elements with zero sum and no two consecutive declines, no adjacent equal elements, and no element more than one greater than the previous (random base sawtooth pattern).

Original entry on oeis.org

1, 7, 9, 31, 53, 141, 380, 1010, 2152, 5014, 14018, 35542, 78385, 188789, 503051, 1241939, 2859687, 6957672, 17863397, 43991846, 103888178, 253531752, 640390692, 1575397895, 3777406958, 9259136398, 23167497450, 57008137128, 138220165963
Offset: 1

Views

Author

R. H. Hardin Nov 13 2011

Keywords

Comments

Column 7 of A200181

Examples

			Some solutions for n=6
..3....6....7....2....3....4....1....2....6....2....5....2....6....4....5....2
.-1....5....2....3...-1....0....2....3....2....3...-1....0....0....2....6....0
..0....6....3....4....0....1....3....4....3....4....0....1....1....3...-3....1
.-1...-6...-4...-3....1...-2....0...-4...-3...-2....1....2...-1...-2...-2....0
..0...-5...-3...-2....2...-1....1...-3...-2...-1....2...-3....0...-1...-1....1
.-1...-6...-5...-4...-5...-2...-7...-2...-6...-6...-7...-2...-6...-6...-5...-4
		

A200183 Number of -n..n arrays x(0..4) of 5 elements with zero sum and no two consecutive declines, no adjacent equal elements, and no element more than one greater than the previous (random base sawtooth pattern).

Original entry on oeis.org

2, 12, 15, 24, 31, 48, 53, 74, 83, 108, 119, 148, 159, 196, 209, 246, 263, 308, 323, 372, 391, 444, 465, 522, 543, 608, 631, 696, 723, 796, 821, 898, 927, 1008, 1039, 1124, 1155, 1248, 1281, 1374, 1411, 1512, 1547, 1652, 1691, 1800, 1841, 1954, 1995, 2116, 2159
Offset: 1

Views

Author

R. H. Hardin, Nov 13 2011

Keywords

Comments

Row 5 of A200181.

Examples

			Some solutions for n=6:
..0....6....5....5....4....3....0....5....2....2....2....1....2....4....2....6
..1....1...-2....6...-2...-1...-1....6....3....3....3....2...-1....1....3...-1
..2....2...-1...-3...-1....0....0...-4...-1....4...-2...-2....0....2....0....0
.-2...-5....0...-2....0....1....1...-3....0...-5...-1...-1....1...-4....1...-3
.-1...-4...-2...-6...-1...-3....0...-4...-4...-4...-2....0...-2...-3...-6...-2
		

Crossrefs

Cf. A200181.

Formula

Empirical: a(n) = a(n-2) +a(n-3) +a(n-4) -a(n-5) -a(n-6) -a(n-7) +a(n-9) for n>10.
Empirical g.f.: x*(2 + 12*x + 13*x^2 + 10*x^3 + 2*x^4 - x^5 - 3*x^6 + 2*x^8 + x^9) / ((1 - x)^3*(1 + x)^2*(1 + x^2)*(1 + x + x^2)). - Colin Barker, May 19 2018

A200184 Number of -n..n arrays x(0..5) of 6 elements with zero sum and no two consecutive declines, no adjacent equal elements, and no element more than one greater than the previous (random base sawtooth pattern).

Original entry on oeis.org

6, 15, 29, 48, 72, 103, 141, 186, 244, 309, 385, 472, 572, 685, 813, 954, 1110, 1283, 1475, 1682, 1910, 2155, 2421, 2710, 3020, 3351, 3707, 4086, 4492, 4923, 5381, 5864, 6378, 6921, 7493, 8096, 8730, 9395, 10097, 10830, 11598, 12401, 13241, 14118, 15034
Offset: 1

Views

Author

R. H. Hardin, Nov 13 2011

Keywords

Comments

Row 6 of A200181.

Examples

			Some solutions for n=6:
..2....3....4....4....6....5....3....2....5....2....3....2....4....6....4....6
..3....4...-1....3...-2....0....1....3....3...-2...-1....1...-2....1....5....0
.-1....5....0....4...-1....1....2...-2....4...-1....0....2...-1....2....6....1
..0...-5....1...-3....0...-3....3...-1...-4....0....1...-1....0...-2...-5...-1
..1...-4....2...-2....1...-2...-5....0...-3....1...-2....0...-1...-1...-4....0
.-5...-3...-6...-6...-4...-1...-4...-2...-5....0...-1...-4....0...-6...-6...-6
		

Crossrefs

Cf. A200181.

Formula

Empirical: a(n) = a(n-1) +a(n-2) -a(n-4) -a(n-7) +a(n-9) +a(n-10) -a(n-11) for n>12.
Empirical g.f.: x*(6 + 9*x + 8*x^2 + 4*x^3 + x^4 - 2*x^5 - 5*x^6 - 4*x^7 + 4*x^8 + 5*x^9 - 2*x^11) / ((1 - x)^4*(1 + x)*(1 + x + x^2)*(1 + x + x^2 + x^3 + x^4)). - Colin Barker, May 20 2018
Showing 1-10 of 11 results. Next