A200183 Number of -n..n arrays x(0..4) of 5 elements with zero sum and no two consecutive declines, no adjacent equal elements, and no element more than one greater than the previous (random base sawtooth pattern).
2, 12, 15, 24, 31, 48, 53, 74, 83, 108, 119, 148, 159, 196, 209, 246, 263, 308, 323, 372, 391, 444, 465, 522, 543, 608, 631, 696, 723, 796, 821, 898, 927, 1008, 1039, 1124, 1155, 1248, 1281, 1374, 1411, 1512, 1547, 1652, 1691, 1800, 1841, 1954, 1995, 2116, 2159
Offset: 1
Keywords
Examples
Some solutions for n=6: ..0....6....5....5....4....3....0....5....2....2....2....1....2....4....2....6 ..1....1...-2....6...-2...-1...-1....6....3....3....3....2...-1....1....3...-1 ..2....2...-1...-3...-1....0....0...-4...-1....4...-2...-2....0....2....0....0 .-2...-5....0...-2....0....1....1...-3....0...-5...-1...-1....1...-4....1...-3 .-1...-4...-2...-6...-1...-3....0...-4...-4...-4...-2....0...-2...-3...-6...-2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..200
Crossrefs
Cf. A200181.
Formula
Empirical: a(n) = a(n-2) +a(n-3) +a(n-4) -a(n-5) -a(n-6) -a(n-7) +a(n-9) for n>10.
Empirical g.f.: x*(2 + 12*x + 13*x^2 + 10*x^3 + 2*x^4 - x^5 - 3*x^6 + 2*x^8 + x^9) / ((1 - x)^3*(1 + x)^2*(1 + x^2)*(1 + x + x^2)). - Colin Barker, May 19 2018
Comments