cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A200192 T(n,k)=Number of -k..k arrays x(0..n-1) of n elements with zero sum, adjacent elements differing by more than one, and elements alternately increasing and decreasing.

Original entry on oeis.org

1, 1, 2, 1, 4, 0, 1, 6, 6, 2, 1, 8, 14, 14, 0, 1, 10, 28, 48, 24, 2, 1, 12, 44, 120, 144, 54, 0, 1, 14, 66, 242, 506, 482, 104, 2, 1, 16, 90, 426, 1298, 2240, 1534, 230, 0, 1, 18, 120, 688, 2794, 7266, 9856, 5148, 464, 2, 1, 20, 152, 1040, 5300, 18838, 40632, 44562, 16826
Offset: 1

Views

Author

R. H. Hardin Nov 14 2011

Keywords

Comments

Table starts
.1....1.....1......1.......1........1.........1.........1..........1..........1
.2....4.....6......8......10.......12........14........16.........18.........20
.0....6....14.....28......44.......66........90.......120........152........190
.2...14....48....120.....242......426.......688......1040.......1494.......2066
.0...24...144....506....1298.....2794......5300......9220......14974......23094
.2...54...482...2240....7266....18838.....41938.....83600.....153278.....263198
.0..104..1534...9856...40632...127800....334278....765598....1585416....3034396
.2..230..5148..44562..231916...881008...2702398...7100700...16594066...35377058
.0..464.16826.199932.1320876..6081086..21910764..66127278..174522934..414666246
.2.1028.56918.914676.7630236.42452472.179391752.621239172.1850379990.4897547876

Examples

			Some solutions for n=6 k=5
.-4....0....5....2....4...-4....5....4....1....4....1...-3...-3...-1....4....0
..3....3...-4....4...-3....2...-5...-2...-3...-3...-1....5....0....3...-3...-2
.-4...-4....1...-5....5...-2....4....1....3....3....3...-5...-3...-1....0....3
..2....2...-4....1...-5....4...-5...-2...-1...-4...-4....5....5....1...-2...-2
..0...-5....4...-5....4...-3....4....3....1....4....5...-2...-3...-2....2....4
..3....4...-2....3...-5....3...-3...-4...-1...-4...-4....0....4....0...-1...-3
		

Crossrefs

Row 3 is A139596(n-1)