A200193 Number of -n..n arrays x(0..3) of 4 elements with zero sum, adjacent elements differing by more than one, and elements alternately increasing and decreasing.
2, 14, 48, 120, 242, 426, 688, 1040, 1494, 2066, 2768, 3612, 4614, 5786, 7140, 8692, 10454, 12438, 14660, 17132, 19866, 22878, 26180, 29784, 33706, 37958, 42552, 47504, 52826, 58530, 64632, 71144, 78078, 85450, 93272, 101556, 110318, 119570, 129324
Offset: 1
Keywords
Examples
Some solutions for n=5: .-3....2...-2....0....0...-2....1....1...-2....5...-3...-3....0...-2...-1...-1 ..2...-5....5...-4....5....0...-5...-3....5...-5....5...-5...-2....3...-4....2 .-4....3...-3....5...-4...-3....3....3...-5....1...-4....5....4...-4....4...-3 ..5....0....0...-1...-1....5....1...-1....2...-1....2....3...-2....3....1....2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..200
Crossrefs
Cf. A200192.
Formula
Empirical: a(n) = 3*a(n-1) -3*a(n-2) +2*a(n-3) -3*a(n-4) +3*a(n-5) -a(n-6).
Empirical g.f.: 2*x*(1 + 3*x + x^2)*(1 + x + 2*x^2) / ((1 - x)^4*(1 + x + x^2)). - Colin Barker, May 20 2018
Comments