A200195 Number of -n..n arrays x(0..5) of 6 elements with zero sum, adjacent elements differing by more than one, and elements alternately increasing and decreasing.
2, 54, 482, 2240, 7266, 18838, 41938, 83600, 153278, 263198, 428718, 668684, 1005790, 1466934, 2083578, 2892104, 3934174, 5257082, 6914122, 8964936, 11475878, 14520370, 18179258, 22541172, 27702886, 33769670, 40855654, 49084180
Offset: 1
Keywords
Examples
Some solutions for n=5: ..1...-5...-5....3...-4....0....0...-2...-3....2....4....3...-4...-4...-1....0 .-5....0....4...-2....3...-5...-3....1...-1...-1...-4...-3....4....5...-3....4 ..0...-5...-3....3...-1....4....5...-5...-4....4....4....3...-3...-5....5...-3 .-4....5....5...-4....4...-3...-3....5....4...-4...-4...-3....0....3...-5...-1 ..5....1...-2....1...-5....3....3...-1...-1....3....1....5...-2...-2....5...-4 ..3....4....1...-1....3....1...-2....2....5...-4...-1...-5....5....3...-1....4
Links
- R. H. Hardin, Table of n, a(n) for n = 1..200
Crossrefs
Cf. A200192.
Formula
Empirical: a(n) = 3*a(n-1) -2*a(n-2) -a(n-3) +2*a(n-5) -a(n-6) -a(n-7) +2*a(n-8) -a(n-10) -2*a(n-11) +3*a(n-12) -a(n-13).
Empirical g.f.: 2*x*(1 + 24*x + 162*x^2 + 452*x^3 + 782*x^4 + 999*x^5 + 1045*x^6 + 910*x^7 + 622*x^8 + 292*x^9 + 74*x^10 + 5*x^11) / ((1 - x)^6*(1 + x)*(1 + x + x^2)*(1 + x + x^2 + x^3 + x^4)). - Colin Barker, May 20 2018
Comments