This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A200219 #12 Mar 30 2012 18:36:00 %S A200219 1,1,1,2,1,2,1,4,3,2,1,4,1,2,0,8,1,6,1,4,1,2,1,8,0,2,9,2,1,4,1,16,0,2, %T A200219 0,12,1,2,0,8,1,4,1,2,3,2,1,16,7,10,2,2,1,18,0,8,0,2,1,8,1,2,3,32,2,4, %U A200219 1,4,0,2,1,24,1,2,0,4,6,4,1,16,27,2,1,8 %N A200219 Number of solutions of the equation x^n + (x+1)^n = (x+2)^n (mod n) for x = 0..n-1. %C A200219 a(n) = 0 for n = 15, 25, 33, 35, 39, 55, 57,… (see A200046). %C A200219 a(n) = 1 if n prime. %H A200219 Michel Lagneau, <a href="/A200219/b200219.txt">Table of n, a(n) for n = 1..1000</a> %e A200219 a(6) = 2 because: %e A200219 for x = 3, 3^6 + 4^6 == 1(mod 6) and 5^6 == 1(mod 6). %e A200219 for x = 5, 5^6 + 6^6 == 1 (mod 6) and (7)^6 == 1 (mod 6). %p A200219 for n from 1 to 100 do:ii:=0:for x from 0 to n-1 do:if x^n+(x+1)^n -(x+2)^n mod n=0 then ii:=ii+1:else fi:od: printf(`%d, `,ii):od: %t A200219 Array[Function[n,Count[Array[Mod[#^n+(#+1)^n-(#+2)^n,n]&,n,0],0]],84] %Y A200219 Cf. A195637, A200046. %K A200219 nonn %O A200219 1,4 %A A200219 _Michel Lagneau_, Nov 14 2011