This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A200224 #11 Feb 12 2025 13:03:07 %S A200224 8,4,8,9,0,5,1,8,8,3,2,9,5,2,2,3,6,1,7,3,4,5,6,3,8,1,6,2,6,6,1,3,2,6, %T A200224 7,6,8,3,4,5,9,5,3,3,8,7,9,9,7,8,6,6,5,2,5,8,0,4,1,9,1,3,6,6,3,5,7,5, %U A200224 7,3,3,0,4,0,5,9,1,3,7,2,4,9,5,3,8,3,2,3,5,4,5,6,3,8,6,2,5,8,6 %N A200224 Decimal expansion of greatest x satisfying 3*x^2 - cos(x) = 2*sin(x). %C A200224 See A199949 for a guide to related sequences. The Mathematica program includes a graph. %H A200224 G. C. Greubel, <a href="/A200224/b200224.txt">Table of n, a(n) for n = 0..10000</a> %H A200224 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %e A200224 least x: -0.3231143338862262845356370492311714... %e A200224 greatest x: 0.84890518832952236173456381626613... %t A200224 a = 3; b = -1; c = 2; %t A200224 f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x] %t A200224 Plot[{f[x], g[x]}, {x, -3, 3}, {AxesOrigin -> {0, 0}}] %t A200224 r = x /. FindRoot[f[x] == g[x], {x, -.33, -.32}, WorkingPrecision -> 110] %t A200224 RealDigits[r] (* A200223 *) %t A200224 r = x /. FindRoot[f[x] == g[x], {x, .84, .85}, WorkingPrecision -> 110] %t A200224 RealDigits[r] (* A200224 *) %o A200224 (PARI) a=3; b=-1; c=2; solve(x=0, 1, a*x^2 + b*cos(x) - c*sin(x)) \\ _G. C. Greubel_, Jun 30 2018 %Y A200224 Cf. A199949. %K A200224 nonn,cons %O A200224 0,1 %A A200224 _Clark Kimberling_, Nov 14 2011