This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A200226 #11 Feb 12 2025 13:03:10 %S A200226 1,0,1,2,2,6,5,5,6,2,9,6,9,2,0,9,4,1,7,3,3,4,5,5,4,4,1,9,9,3,8,2,7,2, %T A200226 1,4,5,5,8,9,6,1,2,7,1,3,9,8,2,8,6,8,9,9,1,3,1,2,1,0,7,8,3,4,0,7,3,9, %U A200226 5,8,9,3,1,6,8,9,8,9,6,3,8,0,4,1,5,9,0,7,5,0,4,6,8,3,4,6,0,0,5 %N A200226 Decimal expansion of greatest x satisfying 3*x^2 - cos(x) = 3*sin(x). %C A200226 See A199949 for a guide to related sequences. The Mathematica program includes a graph. %H A200226 G. C. Greubel, <a href="/A200226/b200226.txt">Table of n, a(n) for n = 1..10000</a> %H A200226 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %e A200226 least x: -0.25837586008348694859843826122973... %e A200226 greatest x: 1.012265562969209417334554419938... %t A200226 a = 3; b = -1; c = 3; %t A200226 f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x] %t A200226 Plot[{f[x], g[x]}, {x, -3, 3}, {AxesOrigin -> {0, 0}}] %t A200226 r = x /. FindRoot[f[x] == g[x], {x, -.26, -.25}, WorkingPrecision -> 110] %t A200226 RealDigits[r] (* A200225 *) %t A200226 r = x /. FindRoot[f[x] == g[x], {x, 1.0, 1.1}, WorkingPrecision -> 110] %t A200226 RealDigits[r] (* A200226 *) %o A200226 (PARI) a=3; b=-1; c=3; solve(x=1, 2, a*x^2 + b*cos(x) - c*sin(x)) \\ _G. C. Greubel_, Jun 30 2018 %Y A200226 Cf. A199949. %K A200226 nonn,cons %O A200226 1,4 %A A200226 _Clark Kimberling_, Nov 14 2011