This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A200228 #11 Feb 12 2025 13:04:27 %S A200228 1,1,6,4,7,2,0,1,3,2,6,0,0,0,8,6,5,4,8,1,4,4,1,7,3,6,0,3,9,1,7,6,2,9, %T A200228 3,4,2,8,3,8,8,5,9,8,2,9,2,3,6,1,6,8,4,5,0,1,3,9,9,2,3,7,8,1,6,7,5,4, %U A200228 2,8,8,0,2,7,2,0,0,6,5,0,9,7,8,3,9,7,1,5,4,7,9,2,5,5,4,8,9,5,0 %N A200228 Decimal expansion of greatest x satisfying 3*x^2 - cos(x) = 4*sin(x). %C A200228 See A199949 for a guide to related sequences. The Mathematica program includes a graph. %H A200228 G. C. Greubel, <a href="/A200228/b200228.txt">Table of n, a(n) for n = 1..10000</a> %H A200228 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %e A200228 least x: -0.21220726159791829897823740501037540... %e A200228 greatest x: 1.164720132600086548144173603917629... %t A200228 a = 3; b = -1; c = 4; %t A200228 f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x] %t A200228 Plot[{f[x], g[x]}, {x, -3, 3}, {AxesOrigin -> {0, 0}}] %t A200228 r = x /.FindRoot[f[x] == g[x], {x, -.22, -.21}, WorkingPrecision -> 110] %t A200228 RealDigits[r] (* A200227 *) %t A200228 r = x /. FindRoot[f[x] == g[x], {x, 1.1, 1.2}, WorkingPrecision -> 110] %t A200228 RealDigits[r] (* A200228 *) %o A200228 (PARI) a=3; b=-1; c=4; solve(x=1, 2, a*x^2 + b*cos(x) - c*sin(x)) \\ _G. C. Greubel_, Jun 30 2018 %Y A200228 Cf. A199949. %K A200228 nonn,cons %O A200228 1,3 %A A200228 _Clark Kimberling_, Nov 14 2011